首页 > 论文 > Frontiers of Optoelectronics > 4卷 > 2期(pp:150-155)

Room temperature synthesis of flower-like CuS nanostructures under assistance of ionic liquid

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

Flower-like CuS nanostructures have been synthesized via a liquid precipitation route by the reaction between CuCl2$2H2O and thioacetamide (CH3CSNH2, TAA) in the ionic liquid 1-butyl-3-methyl imidazole six hexafluorophosphoric acid salts ([BMIM][PF6]) aqueous solution at room temperature. The products were characterized by X-ray powder diffraction (XRD), field emission scanning electronic microscopy (FESEM), Brunauer-Emmett-Teller (BET), Ultraviolet-Visible Spectrophotometer (UV-Vis) and Photoluminescence (PL) techniques. The as-prepared CuS nanostructures have a mean diameter of about 1 μm. A plausible mechanism was proposed to explain the formation of CuS nanostructures. The effects of experimental parameters on the formation of the products were also explored. With BET theory, it is found that the as-prepared CuS nanostructures have a specific area of 39m2/g. The Barrett-Joyner-Halenda (BJH) pore size distribution of the as-prepared CuS nanostructures presents smaller pores centers about 60 nm. The UV-Vis and PL curves indicate that the asprepared CuS nanostructures are promising candidates for the development of photoelectric devices.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.1007/s12200-011-0167-4

基金项目:This work was supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars (No. 2008-17), Ministry of Personnel of the People’s Republic of China, and the Natural Science Foundation Project of Chong Qing (No. CSTC2007BB4332). The authors would like to thank Prof. Dingfei Zhang, College of Materials Science and Engineering, Chongqing University, for his assistances with FESEM characterization.

收稿日期:2010-09-15

修改稿日期:2010-09-30

网络出版日期:--

作者单位    点击查看

Chuyan CHEN:School of Materials Science and Engineering, Education Ministry Key Laboratory on Luminescence and Real-Time Analysis, Southwest University, Chonqqing 400715, China
Qing LI:School of Materials Science and Engineering, Education Ministry Key Laboratory on Luminescence and Real-Time Analysis, Southwest University, Chonqqing 400715, China
Yiying WANG:School of Materials Science and Engineering, Education Ministry Key Laboratory on Luminescence and Real-Time Analysis, Southwest University, Chonqqing 400715, China
Yuan LI:School of Materials Science and Engineering, Education Ministry Key Laboratory on Luminescence and Real-Time Analysis, Southwest University, Chonqqing 400715, China
Xiaolin ZHONG:School of Materials Science and Engineering, Education Ministry Key Laboratory on Luminescence and Real-Time Analysis, Southwest University, Chonqqing 400715, China

联系人作者:Qing LI(qli@swu.edu.cn)

【1】Wang K J, Li G D, Wang Q, Chen J S. Formation of singlecrystalline CuS nanoplates vertically standing on flat substrate. Crystal Growth & Design, 2007, 7(11): 2265-2267

【2】Mane R S, Lokhande C D. Chemical deposition method for metal chalcogenide thin films. Materials Chemistry and Physics, 2000, 1(65): 1-31

【3】Roy P, Srivastava S K. Low-temperature synthesis of CuS nanorods by simple wet chemical method. Materials Letters, 2007, 61(8-9): 1693-1607

【4】Raevskaya A E, Stroyuk A U, Kuchmii S Y, Kryukov A I. Catalytic activity of CuS nanoparticles in hydrosulfide ions air oxidation. Journal of Molecular Catalysis A: Chemical, 2004, 212(1-2): 259-265

【5】Zhang Y C, Qian T, Hu X Y, Zhou W D. A facile low temperature solvothermal route to copper monosulfide submicrotubes. Materials Research Bulletin, 2005, 40(10): 1696-1704

【6】Barrelet C J, Wu Y, Bell D C, Lieber C M. Synthesis of CdS and ZnS nanowires using single-source molecular precursors. Journal of the American Chemical Society, 2003, 125(38): 11498-11499

【7】Xue P C, Lu R, Huang Y, Jin M, Tan C H, Bao C Y, Wang Z M, Zhao Y Y. Novel pearl-necklace porous CdS nanofiber templated by organogel. Langmuir, 2004, 20(15): 6470-6475

【8】Xue P C, Lu R, Li D M, Jin M, Tan C, Bao C, Wang Z, Zhao Y, Zhao Y Y. Novel CuS nanofibers using organogel as a template: controlled by binding sites. Langmuir, 2004, 20(25): 11234-11239

【9】Tan C H, Zhu Y L, Lu R, Xue P C, Bao C Y, Liu X L, Fei Z P, Zhao Y Y. Synthesis of copper sulfide nanotube in the hydrogel system. Materials Chemistry and Physics, 2005, 91(1): 44-47

【10】Wu C Y, Yu S H, Chen S F, Liu G N, Liu B H. Large scale synthesis of uniform CuS nanotubes in ethylene glycol by a sacrificial templating method under mile conditions. Journal of Materials Chemistry, 2006, 16(32): 3326-3331

【11】Ge L, Jing X Y,Wang J, Jamil S, Liu Q, Song D L, Xie Y, Yang P P, Zhang M L. Ionic liquid-assisted synthesis of CuS nestlike hollow spheres assembled by microflakes using an oil water interface route. Crystal Growth & Design, 2010, 10(4): 1688-1692

【12】Gao J N, Li Q S, Zhao H B, Li L S, Liu C L, Gong Q H, Qi L M. One-pot synthesis of uniform Cu2O and CuS hollow spheres and their optical limiting properties. Chemistry of Materials, 2008, 20(19): 6263-6369

【13】Shen X P, Zhao H, Shu H Q, Zhou H, Yuan A H. Self-assembly of CuS nanoflakes into flower-like microspheres: synthesis and characterization. Journal of Physics and Chemistry of Solids, 2009, 70(2): 422-427

【14】Zhu L Y, Xie Y, Zheng XW, Liu X, Zhou G E. Fabrication of novel urchin-like architecture and snowflake-like pattern CuS. Journal of Crystal Growth, 2004, 260(3-4): 494-499

【15】Zhang Y C, Hu X Y, Qiao T. Shape-controlled synthesis of CuS nanocrystallites via a facile hydrothermal route. Solid State Communications, 2004, 132(11): 779-782

【16】Roy P, Mondal K, Srivastzva S K. Synthesis of twinned CuS nanorods by a simple wet chemical method. Crystal Growth & Design, 2008, 5(8): 1530-1534

【17】Gao L, Wang E B, Lian S Y, Kang Z H, Lan Y, Wu D. Microemulsion-directed synthesis of different CuS nanocrystals. Solid State Communications, 2004, 130(5): 309-312

【18】van Rantwijk F, Sheldon R A. Biocatalysis in ionic liquids. Chemical Reviews, 2007, 107(6): 2757-2785

【19】Li Z H, Liu Z M, Zhang J L, Han B X, Du J M, Gao Y N, Jiang T. Synthesis of single-crystal gold nanosheets of large size in ionic liquids. Journal of Physical Chemistry B, 2005, 109(30): 14445-14448

【20】Qin Y, Song N J, Zhao N N, Li M X, Qi L M. Ionic liquid-assisted growth of single-crystalline dendritic gold nanostructures with a three-fold symmetry. Chemistry of Materials, 2008, 20(12): 3965-3972

【21】Wang Y, Yang H. Synthesis of CoPt nanorods in ionic liquids. Journal of the American Chemical Society, 2005, 127(15): 5316-5317

【22】Thirumurugan A. Use of ionic liquids in synthesis of nanocrystals, nanorods and nanowires of elemental chalcogens. Bulletin of Materials Science, 2007, 30(2): 179-182

【23】Movahedi M, Kowsari E, Mahjoub A R, Yavari I. A task specific basic ionic liquid for synthesis of flower-like ZnO by hydrothermal method. Materials Letters, 2008, 62(23): 3856-3858

【24】Jiang Y, Zhu Y J. Microwave-assisted synthesis of sulfide M2S3 (M= Bi, Sb) nanorods using an ionic liquid. Journal of Physical Chemistry B, 2005, 109(10): 4361-4364

【25】Zhu Y J,WangWW, Qi R J, Hu X L. Microwave-assisted synthesis of single-crystalline tellurium nanorods and nanowires in ionic liquids. Angewandte Chemie, 2004, 43(11): 1410-1414

【26】Jacob D S, Bitton L, Grinblat J, Felner I, Koltypin Y, Gedanken A. Are ionic liquids really a boon for the synthesis of inorganic materials? A general method for the fabrication of nanosized metal fluorides. Chemistry of Materials, 2006, 18(13): 3162-3168

【27】He Y H, Li D Z, Chen Z X, Chen Y B, Fu X Z. New synthesis of single-crystalline InVO4 nanorods using an ionic liquid. Journal of the American Ceramic Society, 2007, 90(11): 3698-3703

【28】Tang G H. Synthesis of nanometer powders by liquid precipitation. Shanxi Chemical Industry, 2005, 25(3): 8-10 (in Chinese)

【29】Ding T Y, Wang M S, Guo S P, Guo G C, Huang J S. CuS nanoflowers prepared by a polyol route and their photocatalytic property. Materials Letters, 2008, 62(30): 4529-4531

【30】Zhang J, Zhang Z K. Hydrothermal synthesis and optical properties of CuS nanoplates. Materials Letters, 2008, 62(15): 2279-2281

【31】Thongtem T, Phuruangrant A, Thongtem S. Formation of CuS with flower like, hollow spherical, and tubular structures using the solvothermal-microwave process. Current Applied Physics, 2009, 9(1): 195-200

【32】Pereiro A B, Legido J L, Rodríguez A. Physical properties of ionic liquids based on 1-alkyl-3-methylimidazolium cation and hexafluorophosphate as anion and temperature dependence. Journal of Chemical Thermodynamics, 2007, 39(8): 1168-1175

【33】Zhang J, Zhang Z K. Shape-controlled synthesis of CuS nanocrystallites via a facial solution route. Journal of Functional Materials, 2007, 38: 2056-2058

【34】Xu H L, Wang W Z, Zhu W, Zhou L. Synthesis of octahedral CuS nanocages via a solid-liquid reaction. Nanotechnology, 2006, 17(15): 3649-3654

【35】Chen L F, Yu W, Li Y. Synthesis and characterization of tuber CuS with flower-like wall from a low temperature hydrothermal route. Powder Technology, 2009, 191(1-2): 52-54

【36】Li F, Kong T, Bi W T, Li D C, Li Z, Huang X T. Synthesis and optical of CuS nanoplate-based architectures by a solvothermal method. Applied Surface Science, 2009, 255(12): 6285-6289

引用该论文

Chuyan CHEN,Qing LI,Yiying WANG,Yuan LI,Xiaolin ZHONG. Room temperature synthesis of flower-like CuS nanostructures under assistance of ionic liquid[J]. Frontiers of Optoelectronics, 2011, 4(2): 150-155

Chuyan CHEN,Qing LI,Yiying WANG,Yuan LI,Xiaolin ZHONG. Room temperature synthesis of flower-like CuS nanostructures under assistance of ionic liquid[J]. Frontiers of Optoelectronics, 2011, 4(2): 150-155

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF