首页 > 论文 > 光学学报 > 33卷 > 1期(pp:101002--1)

大气湍流对天文望远镜光电导行精度的影响

Influence of Atmospheric Turbulence on the Accuracy of Astronomical Telescope Auto-Guiding System

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

讨论了由大气湍流造成的望远镜导行误差,这一误差将给望远镜光电导行的精度带来较大影响。其中使用单点源目标的导行精度受限于大气相干长度和大气相干时间,而多点源目标及面源的导行精度还与湍流随高度的变化有关。通过分析和仿真(数值模拟)结果表明,现代天文观测必须考虑大气湍流对光电导行精度的影响。通过延长曝光时间可以有效降低湍流大气的影响,同时也降低了光电导行的反馈控制频率。当导行信标为多星或面源则可在一定程度上降低高层大气湍流带来的光电导行误差,从而可以适度减少光电导行曝光时间,提高其反馈控制频率。

Abstract

Telescope guiding error caused by atmospheric turbulence is discussed, which affects significantly the accuracy of telescope auto-guiding system. Guiding precision of a single point source target is limited by the atmospheric coherent length and coherent time, and several point source targets and extended celestial bodies guiding precision also have relation to the turbulence height. Furthermore, analysis and simulation (numerical simulation) results show that modern astronomical observations must consider the influence of atmospheric turbulence on the accuracy of the auto-guiding system. Extending the exposure time can reduce the influence of the turbulent atmosphere, but also reduce the feedback control frequency of the auto-guiding system. The guiding beacon of several stars or extended source can reduce partly auto-guiding error caused by high-layer atmospheric turbulence, which can appropriately reduce the exposure time of the auto-guiding system, and improve its feedback control frequency.

投稿润色
补充资料

中图分类号:P427.1

DOI:10.3788/aos201333.0101002

所属栏目:大气与海洋光学

基金项目:国家自然科学基金(11003041,11103077)资助课题。

收稿日期:2012-06-26

修改稿日期:2012-08-22

网络出版日期:--

作者单位    点击查看

柳光乾:中国科学院云南天文台, 云南 昆明 650011中国科学院大学, 北京 100049
杨磊:中国科学院云南天文台, 云南 昆明 650011
邓林华:中国科学院云南天文台, 云南 昆明 650011中国科学院大学, 北京 100049
李银柱:中国科学院云南天文台, 云南 昆明 650011
刘忠:中国科学院云南天文台, 云南 昆明 650011

联系人作者:柳光乾(lgq@ynao.ac.cn)

备注:柳光乾(1978—),男,博士研究生,主要从事望远镜控制方面的研究。

【1】Mao Wei, Ji Kaifan, Li Binhua et al.. Celestial Measuring Based on CCD [M]. Kunming: Yunnan Technology Press, 2003. 60~75
冒蔚, 季凯帆, 李彬华 等. CCD天体测量学[M].昆明: 云南科技出版社, 2003. 60~75

【2】Ding Xiaohua, Li You, Yu Qifeng et al.. CCD noise calibration and its application in edge location[J]. Acta Optica Sinica, 2008, 28(1): 99~104
丁晓华, 李由, 于起峰 等. CCD噪声标定及其在边缘定位中的应用[J]. 光学学报, 2008, 28(1): 99~104

【3】J. Arines, J. Ares. Minimum variance centroid thresholding [J]. Opt. Lett., 2002, 27(7): 497~499

【4】Li Zhan, Peng Qingyu, Han guoqiang. Comparison of digital centering algorithms based on CCD images [J]. Acta Astronomica Sinca, 2009, 50(3): 340~348
李展, 彭青玉, 韩国强. CCD图像数字定心算法的比较[J]. 天文学报, 2009, 50(3): 340~348

【5】Hu Keliang. Research on the Application of Guide System with Area CCD Camera and Embedded System in High Temporal and Spatial Resolution Observation of Solar Magnetic Field [D]. Beijing: Graduate University of Chinese Academy of Sciences, 2004
胡柯良. 面阵CCD 导行和嵌入式系统在高时空分辨率太阳磁场观测中的应用研究[D]. 北京; 中国科学院研究生院, 2004

【6】B. H. Tatarskii. Wave Propagation in a Turbulent Mdium[M]. Wen Jingsong, Song Zhengfang, Zeng Zongyong et al. Transl.. Beijing: Science Press, 1978
塔塔尔斯基. 湍流大气中波的传播理论[M]. 温景嵩, 宋正方, 曾宗泳 等 译. 北京: 科学出版社, 1978

【7】M. C. Roggemann, B. Welsh. Imaging Through Turbulence[M]. Boca Raton, FL: CRC Press, 1996

【8】F. Roddier. The Effects of Atmospheric Turbulence in Optical Astronomy[M]. E. Wolf, ed., Progress in Optics XIX, 1981

【9】J. W. Goodman. Statistical Optics [M]. New York: Wiley Classics Library Edition, 2000. 361~457

【10】D. L. Fried. Statistics of a geometric representation of wave-front distortion [J]. J. Opt. Soc. Am., 1965, 55(11): 1427~1435

【11】Liu Zhong, Dai Yichun, Jin Zhenyu et al.. The centroid of speckle image and the wavefront tilt[J]. Astronomical Reseanch & TechonolgyPulications of National Astronomical Observatories of China, 2009, 6(2): 119~124
刘忠, 戴懿纯, 金振宇 等. 斑点图的重心与波前倾斜 [J]. 天文研究与技术国家天文台台刊, 2009, 6(2): 119~124

【12】M. A. Kallistratova, A. I. Kon. Fluctuations in the angle of arrival of light waves from an extended source in a turbulent atmosphere[J]. Radiophysics and Quantum Electronics, 1966, 9(6): 636~639

【13】L. C. Andress, R. L. Phillips. Laser Beam Propagation Through Random Media[M]. Bellingham: SPIE Press, 2005. 492~493

【14】G. B. Scharmer, T. I. M. VanWerkhoven. S-DIMM+ height characterization of day-time seeing using solar granulation[J]. Astron. & Astrojphys., 2010, 513(A25): 1~12

【15】M. Sarazin, F. Roddier. The ESO differential image motion monitor [J]. Astron. & Astrophys., 1990, 227(1): 294~300

【16】J. M. Beckers. Increasing the size of the isoplanatic patch with multi-conjugate adaptive optics[C]. ESO Conference and Workshop Proceedings, 1988. 693~703

【17】Chang Xiang, Li Rongwang, Xiong Yaoheng. Predicted space-varying point spread function model for anisoplanatic adaptive optics imaging[J]. Acta Optica Sinica, 2011, 31(12): 1201001
常翔, 李荣旺, 熊耀恒. 基于自适应光学成像非等晕效应的空变点扩展函数估计模型[J]. 光学学报, 2011, 31(12): 1201001

【18】Liu Yunqing, Jiang Huilin, Tong Shoufeng. Study on stabilizational racking technology for atmospheric laser communication system[J]. Chinese J. Lasers, 2011, 38(5): 0505005
刘云清, 姜会林, 佟首峰. 大气激光通信中稳定跟踪器件及算法研究[J]. 中国激光, 2011, 38(5): 0505005

【19】Chen Jingyuan. Geometric anisoplanatism of adaptive optics system[J]. Acta Optica Sinica, 2010, 30(4): 922~927
陈京元. 自适应光学系统的几何非等晕性[J]. 光学学报, 2010, 30(4): 922~927

【20】M. Warner, V. Riot, J. Sebag. LSST telescope guider loop requirements analysis and predicted performance [C]. SPIE, 2010, 7738: 77381U

【21】Li Rongwang, Chang Xiang, Xiong Yaoheng. Numerical simulation of wander of ranging laser beam[J]. Acta Optica Sinica, 2011, 31(11): 1101001
李荣旺, 常翔, 熊耀恒. 测距光束光斑漂移的数值仿真[J] . 光学学报, 2011, 31(11): 1101001

【22】A. J. Jankevics, A. Wirth. Wide field of view adaptive optics[C]. SPIE, 1991, 1534: 438~448

【23】E. P. Waliner. Optimizing the locations of multiconjugate wavefront correctors[C]. SPIE, 1994, 2201: 110~116

【24】R. J. Noll. Zernike polynomials and atmospheric turbulence[J]. J. Opt. Soc. Am., 1976, 66(3): 207~211

【25】N. Roddier. Atmospheric wavefront simulation and Zernike polynomials[C]. SPIE, 1990, 1237: 670~678

【26】B. M. Welsh, C. Dainty. Fourier series based atmospheric phase screen generator for simulating anisoplantic geometries and temporalevolution[C] . SPIE, 1997, 3125: 327~338

【27】R. G. Lane, A. Glindemann, J. Dainty. Simulation of Kolmogorov phase screen[J]. Waves in Random Media, 1992, 2(3): 209~224

引用该论文

Liu Guangqian,Yang Lei,Deng Linhua,Li Yinzhu,Liu Zhong. Influence of Atmospheric Turbulence on the Accuracy of Astronomical Telescope Auto-Guiding System[J]. Acta Optica Sinica, 2013, 33(1): 0101002

柳光乾,杨磊,邓林华,李银柱,刘忠. 大气湍流对天文望远镜光电导行精度的影响[J]. 光学学报, 2013, 33(1): 0101002

被引情况

【1】王红帅,姚永强,刘立勇. 基于天气预报模式预报阿里天文站大气光学湍流. 光学学报, 2013, 33(3): 301006--1

【2】刘向远,钱仙妹,黄宏华,李玉杰,饶瑞中. 宏微脉冲激光激发钠信标回波光子数的数值模拟. 中国激光, 2014, 41(6): 613001--1

【3】徐江海,宫雪非. 利用数值风洞实验进行四种天文圆顶的风载研究. 光学学报, 2015, 35(5): 501005--1

【4】倪小龙,宋卢军,付强,刘艺,李小伟,姜会林,刘智. 热风对流式大气湍流模拟装置湍流模拟特性分析. 光学学报, 2015, 35(s1): 101004--1

【5】倪小龙,宋卢军,姜会林,付强,刘艺,张肃,刘智. 对流湍流池湍流特性与真实大气对比实验研究. 激光与光电子学进展, 2015, 52(9): 90103--1

【6】青春,吴晓庆,李学彬,朱文越,饶瑞中,梅海平. WRF模式估算丽江高美古大气光学湍流廓线. 中国激光, 2015, 42(9): 913001--1

【7】倪小龙,宋卢军,姜会林,付强,刘艺,张肃,刘智. 对流式湍流模拟装置湍流模拟稳定性研究. 激光与光电子学进展, 2015, 52(10): 100102--1

【8】戴聪明,张志勇,马力,冯志伟,魏合理. 红外望远镜站址大气传输和环境背景特性的测量分析研究. 红外与激光工程, 2016, 45(12): 1204005--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF