首页 > 论文 > 光谱学与光谱分析 > 32卷 > 11期(pp:3103-3106)

基于灰度关联分析的冬小麦叶片含水量高光谱估测

Hyperspectral Estimation of Leaf Water Content for Winter Wheat Based on Grey Relational Analysis(GRA)

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

尝试应用灰色关联分析方法(GRA)分析典型的水分植被指数(WVI)和水分含量(LWC)间的关联度, 然后选择对冬小麦叶片水含量敏感的指数, 比较SRM-PLS(逐步回归-偏最小二乘)方法和PLS方法估算LWC的精度。 首先, 对冬小麦WVI与LWC进行灰色关联分析, 筛选出对冬小麦LWC敏感的WVI; 其次, 利用筛选出的敏感WVI, 分别用PLS-SRM方法和PLS两种方式估算冬小麦LWC; 然后对两种方式进行比较, 选择最高决定系数(R2)和最小均方根误差(RMSE)的LWC估算模型来估算冬小麦LWC。 结果表明: 在整个生育期用PLS和PLS-SRM方法估算LWC, R2和RMSE分别为0.605和0.575, 4.75%和7.35%。 研究表明: 先使用GRA对WVI和LWC进行关联度分析, 再用PLS或PLS-SRM方法可以提高冬小麦的LWC估算精度。

Abstract

The objective of the present study was to compare two methods for the precision of estimating leaf water content (LWC) in winter wheat by combining stepwise regression method and partial least squares (SRM-PLS) or PLS based on the relational degree of grey relational analysis (GRA) between water vegetation indexes (WVIs) and LWC. Firstly, data utilized to analyze the grey relationships between LWC and the selected typical WVIs were used to determine the sensitivity of different WVIs to LWC. Secondly, the two methods of estimating LWC in winter wheat were compared, one was to directly use PLS and the other was to combine SRM and PLS, and then the method with the highest determination coefficient (R2) and lowest root mean square error (RMSE) was selected to estimate LWC in winter wheat. The results showed that the relationships between the first five WVI and LWC were stable by using GRA, and then LWC was estimated by using PLS and SRM-PLS at the whole stages with the R2 and RMSEs being 0.605 and 0.575, 4.75% and 7.35%, respectively. The results indicated that the estimation accuracy of LWC could be improved by using GRA firstly and then by using PLS and SRM-PLS.

中国激光微信矩阵
补充资料

中图分类号:S153.1

DOI:10.3964/j.issn.1000-0593(2012)11-3103-04

基金项目:国家自然科学基金项目(41001244)和北京市科技新星计划项目(2011036)资助

收稿日期:2012-05-04

修改稿日期:2012-08-20

网络出版日期:--

作者单位    点击查看

金秀良:扬州大学江苏省作物遗传生理重点实验室, 农业部长江中下游作物生理生态与栽培重点开放实验室, 江苏 扬州225009北京农业信息技术研究中心, 北京100097
徐新刚:北京农业信息技术研究中心, 北京100097
王纪华:北京农业信息技术研究中心, 北京100097
李鑫川:北京农业信息技术研究中心, 北京100097
王妍:扬州大学江苏省作物遗传生理重点实验室, 农业部长江中下游作物生理生态与栽培重点开放实验室, 江苏 扬州225009
谭昌伟:扬州大学江苏省作物遗传生理重点实验室, 农业部长江中下游作物生理生态与栽培重点开放实验室, 江苏 扬州225009
朱新开:扬州大学江苏省作物遗传生理重点实验室, 农业部长江中下游作物生理生态与栽培重点开放实验室, 江苏 扬州225009
郭文善:扬州大学江苏省作物遗传生理重点实验室, 农业部长江中下游作物生理生态与栽培重点开放实验室, 江苏 扬州225009

联系人作者:金秀良(jinxiuxiuliang@126.com)

备注:金秀良, 1985年生, 扬州大学博士研究生

【1】Jackson R D. Advanced Irrigation, 1982, 1: 43.

【2】Lascano R J. Agronomy Journal, 2000, 92: 821.

【3】Li H, Payne W A, Michels J, et al. Environmental and Experimental Botany, 2008, 63: 305.

【4】Knipling E B. Remote Sensing of Environment, 1970, 1: 155.

【5】Thomas J R, Namken L N, Oerther G F, et al. Agronomy Journal, 1971, 63: 845.

【6】Tucker C J. Remote Sensing of Environment, 1980, 10: 23.

【7】Zarco-Tejada P J, Rueda C A, Ustin S L. Remote Sensing of Environment, 2003, 85: 109.

【8】Cheng Y B, Zarco-Tejada P J, Riano D, et al. Remote Sensing of Environment, 2006, 105: 354.

【9】Clevers J G P W, Kooistra L, Schaepman M E. International Journal of Applied Earth Observation and Geoinformation, 2008, 10: 388.

【10】Seeliga H D, Hoehna A, Stodiecka L S, et al. Remote Sensing of Environment, 2008, 112: 1445.

【11】Ceccato P, Flasse S, Tarantola S, et al. Remote Sensing of Environment, 2001, 77: 22.

【12】Deng Julong. Introduction to Grey Mathematics Resources Science. Wuhan: Huazhong University Press, 2010 5-28. Introduction to Grey Mathematical Resource Science.

【13】Penuelas J, Filella I, Biel C, et al. International Journal of Remote Sensing, 1993, 14: 1887.

【14】Schlerf M, Atzberger C, Udelhoven T, et al. A. Mueller (Ed.), 3rd Workshop on Imaging Spectroscopy, Herrsching, Germany, 2003. 559.

【15】Ustin S L, Roberts D A, Gardner M, et al. 2002. Proceedings of the 2002 IEEE IGARSS and 24th Canadian Symposium on Remote Sensing, Toronto, Canada, 24-28 June 2002, pp. 796.

【16】Hunt E R, Rock B N. Remote Sensing of Environment, 1989, 30: 43.

【17】Wang L L, Raymond E Hunt Jr, Qu J J, et al. Remote Sensing of Environment, 2011, 115: 836.

【18】Pimstein A, Eitel J U H, Long D S, et al. Field Crops Research, 2009, 111: 218.

引用该论文

JIN Xiu-liang,XU Xin-gang,WANG Ji-hua,LI Xin-chuan,WANG Yan,TAN Chang-wei,ZHU Xin-kai,GUO Wen-shan. Hyperspectral Estimation of Leaf Water Content for Winter Wheat Based on Grey Relational Analysis(GRA)[J]. Spectroscopy and Spectral Analysis, 2012, 32(11): 3103-3106

金秀良,徐新刚,王纪华,李鑫川,王妍,谭昌伟,朱新开,郭文善. 基于灰度关联分析的冬小麦叶片含水量高光谱估测[J]. 光谱学与光谱分析, 2012, 32(11): 3103-3106

被引情况

【1】金秀良,徐新刚,李振海,王芊,王妍,李存军,王纪华. 基于新型植被指数对冬小麦蛋白质含量的估算研究. 光谱学与光谱分析, 2013, 33(9): 2541-2545

【2】蔡亮红,丁建丽. 基于高光谱多尺度分解的土壤含水量反演. 激光与光电子学进展, 2018, 55(1): 13001--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF