中国激光, 2013, 40 (3): 0305002, 网络出版: 2013-01-14   

大角度偏振无关硅膜光子晶体宽带滤波器

Large-Angle Polarization-Independent Broadband Filters Based on Silicon Photonic Crystal Slabs
作者单位
1 福建师范大学激光与光电子技术研究所, 福建省光子技术重点实验室,医学光电科学与技术教育部重点实验室, 福建 福州 350007
2 闽江学院物理学与电子信息工程系, 福建 福州 350108
摘要
提出一种基于超低折射率如聚甲基丙烯酸甲酯(PMMA)为衬底的大角度偏振无关蜂窝状空气孔型的二维硅基光子晶体宽带滤波器。结合色散关系和严格耦合波理论确定宽带工作区,分析了入射光垂直入射时硅膜厚度及空气孔径对器件性能的影响,得出适合于1.55 μm通信波长的一组优化参数,讨论了非垂直入射及偏振对器件性能的影响。结果表明,垂直入射时,可以得到透射率大于98%、110 nm以上的带宽;非垂直入射时,两偏振的共振带宽将随角度增加而减小,在入射角为18°时,透射率大于98%的共同带宽还能覆盖光通信的整个C波段(1525~1560 nm)。
Abstract
A large-angle polarization-independent broadband guided-mode-resonant filter is proposed based on two-dimensional honey-comb silicon photonic crystal slab with ultralow refractive-index substrate material like polymethy lmethacry late (PMMA). The broadband operating range is determined firstly based on the dispersion relationship and rigorous coupled wave analysis (RCWA). Then the impact of silicon membrane thickness and air hole size on the performance of proposed device under surface normal incidence is investigated and an optimal set of physical parameters for 1.55 μm communication window is obtained correspondingly. Its performance affected by oblique incidence and polarization is also analyzed. It shows that broad bandwidth over 110 nm can be obtained with greater than 98% normalized transmittance under surface normal incidence. The common bandwidth of two polarizations will reduce with the increase of incident angle. But it can still cover the whole C-band window (from 1525 nm to 1560 nm) with over 98% normalized transmittance when the angle reaches 18°.

陈志勇, 郝小龙, 郑彦敏, 陈曦曜, 蒋俊贞, 邱怡申, 强则煊. 大角度偏振无关硅膜光子晶体宽带滤波器[J]. 中国激光, 2013, 40(3): 0305002. Chen Zhiyong, Hao Xiaolong, Zheng Yanmin, Chen Xiyao, Jiang Junzhen, Qiu Yishen, Qiang Zexuan. Large-Angle Polarization-Independent Broadband Filters Based on Silicon Photonic Crystal Slabs[J]. Chinese Journal of Lasers, 2013, 40(3): 0305002.

本文已被 8 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!