Chinese Optics Letters, 2013, 11 (1): 013501, Published Online: Jan. 15, 2013   

100-GeV large scale laser plasma electron acceleration by a multi-PW laser Download: 837次

Author Affiliations
Abstract
We present three possible design options of laser plasma acceleration (LPA) for reaching a 100-GeV level energy by means of a multi-petawatt laser such as the 3.5-kJ, 500-fs PETawatt Aquitane Laser (PETAL) at French Alternative Energies and Atomic Energy Commission (CEA). Based on scaling of laser wakefield acceleration in the quasi-linear regime with the normalized vector potential a0 = 1.4(1.6), acceleration to 100 (130) GeV requires a 30-m-long plasma waveguide operated at the plasma density ne \approx 7 \times 10^{15} cm^{ 3} with a channel depth \Delta n/ne=20%, while a nonlinear laser wakefield accelerator in the bubble regime with a0 \geq 2 can reach 100 GeV approximately in a 36/a0-m-long plasma through self-guiding. The third option is a hybrid concept that employs a ponderomotive channel created by a long leading pulse for guiding a short trailing driving laser pulse. The detail parameters for three options are evaluated, optimizing the operating plasma density at which a given energy gain is obtained over the dephasing length and the matched conditions for propagation of relativistic laser pulses in plasma channels, including the self-guiding. For the production of high-quality beams with 1%-level energy spread and a 1\pi-mm-mradlevel transverse normalized emittance at 100-MeV energy, a simple scheme based on the ionization-induced injection mechanism may be conceived. We investigate electron beam dynamics and effects of synchrotron radiation due to betatron motion by solving the beam dynamics equations on energy and beam radius numerically. For the bubble regime case with a0=4, radiative energy loss becomes 10% at the maximum energy of 90 GeV.

Kazuhisa Nakajima, Haiyang Lu, Xueyan Zhao, Baifei Shen, Ruxin Li, Zhizhan Xu. 100-GeV large scale laser plasma electron acceleration by a multi-PW laser[J]. Chinese Optics Letters, 2013, 11(1): 013501.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!