首页 > 论文 > 光电工程 > 40卷 > 3期(pp:87-93)

MSTAR图像 2D Gabor滤波增强与自适应阈值分割

2D Gabor Filter Enhancing and Adaptive Thresholding for MSTAR Image

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为实现 MSTAR图像无监督分割,并提高分割精度和计算效率,提出了一种基于 Gabor滤波增强的自适应阈值分割算法。首先利用多尺度、多方向的 Gabor滤波器组对待分割图像进行滤波处理,抑制目标、阴影和背景区域内部的斑噪起伏,同时增强区域间的差异性;在此基础上,通过对增强图像统计特性的分析,给出了灰度阈值计算形式,实现了 MSTAR图像的自适应分割。实验结果表明,本文算法对不同斑噪强度的 MSTAR图像均具有良好的处理效果,在分割精度、计算效率等方面优于传统的 OTSU,以及 FCM、MRF等分割方法。

Abstract

Image segmentation is a hot point in the research field of automatic target recognition of SAR image. In order to segment the MSTAR image automatically, a new adaptive method is proposed. Firstly, 2D Gabor filters with various orientations and scales are used to enhance the original image, which can effectually reduce speckle noise in the background, and smooth the interior of the homogeneous regions. Then the analysis of the statistical characteristics of the enhanced image is made, based on which the adaptive thresholding rules is presented for the automatically segmentation of the images. Experiment results with the MSTAR images indicate that the algorithm presented has advantage of segmentation accuracy, calculation efficiency and noise robustness over the traditional methods, such as OTSU, FCM and MRF.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TP75

DOI:10.3969/j.issn.1003-501x.2013.03.014

所属栏目:图像与信号处理

收稿日期:2012-10-09

修改稿日期:2012-12-01

网络出版日期:--

作者单位    点击查看

倪维平:西北核技术研究所,西安 710024
严卫东:西北核技术研究所,西安 710024
吴俊政:西北核技术研究所,西安 710024
芦颖:西北核技术研究所,西安 710024
郑刚:西北核技术研究所,西安 710024
马心璐:西北核技术研究所,西安 710024

联系人作者:倪维平(nihao_wpni@163.com)

备注:倪维平(1980-),男(汉族),江苏徐州人。博士研究生,主要研究方向遥感图像处理与自动目标识别等。

【1】Charis O,Shaun Q. Understanding Synthetic Aperture Radar Images [M]. Raleigh:SciTech Publishing Inc,2004:75-119.

【2】Schumacher R,Schiller J. Non-cooperative target identification of battlefield targets classification results based on SAR images [C]//IEEE International Radar Conference,Arlington,USA,May 9-12,2005:167-172.

【3】Mehmet S,Bulent S. Survey over image thresholding techniques and quantitative performance evaluation [J]. Journal of Electronic Imaging(S1017-9909),2004,13(1):146–165.

【4】田小林,焦李成,缑水平 . 加权空间函数优化 FCM的 SAR图像分割 [J].西安电子科技大学学报, 2008,35(5):847-852. TIAN Xiaolin,JIAO Licheng,GOU Shuiping. SAR image segmentation using optimized FCM with weighted spatial function [J]. Journal of Xidian University,2008,35(5):846-852.

【5】HOU Yimin,GUO Lei. A Novel SAR image segmentation method based on Markov Random Field [J]. Journal of Electronics & Information Technology(S1009-5896),2007,29(5):1069-1072.

【6】Marcelja S. Mathematical Description of the Responses of Simple Cortical Cells [J]. Journal of the Optical Society of America (S0030-3941),1980,70(11):1297–1300.

【7】Daugman J G. Uncertainty Relation for Resolution in Space,Spatial Frequency,and Orientation Optimized by Two–Dimensional Visual Cortical Filters [J]. Journal of the Optical Society of America(S0740-3232),1985,2(7):1160–1169.

【8】王培法,冯学智,肖鹏峰,等 . 面向遥感影像纹理提取的 Gabor滤波器组参数解算研究 [J].遥感信息, 2008(6):5-8. WANG Peifa,FENG Xuezhi,XIAO Pengfeng,et al. Parameter Calculation of Gabor Filter Banks for Texture Extraction of Remote Sensing Image [J]. Remote Sensing Information,2008(6):5-8.

【9】Lee T S. Image Representation Using 2D Gabor Wavelets [J]. IEEE Transactions Pattern Analysis and Machine Intelligence (S0162-8828),2003,18(10):959–971.

引用该论文

NI Weiping,YAN Weidong,WU Junzheng,LU Ying,ZHENG Gang,MA Xinlu. 2D Gabor Filter Enhancing and Adaptive Thresholding for MSTAR Image[J]. Opto-Electronic Engineering, 2013, 40(3): 87-93

倪维平,严卫东,吴俊政,芦颖,郑刚,马心璐. MSTAR图像 2D Gabor滤波增强与自适应阈值分割[J]. 光电工程, 2013, 40(3): 87-93

被引情况

【1】李世文,张彬,刘泽民,梁小晓. 基于波原子阈值算法的OCT图像降噪技术. 光电工程, 2014, 41(7): 75-80

【2】张立云,刘南艳,侯媛彬,刘晓建. 多阈值S-F的光照不均图像分割. 光电工程, 2014, 41(7): 81-87

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF