首页 > 论文 > 光谱学与光谱分析 > 33卷 > 6期(pp:1506-1511)

基于Tetrolet变换的红外与可见光融合

Infrared and Visible Images Fusion Based on Tetrolet Transform

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对目前红外与可见光图像融合速度慢、 融合结果对比度不高且易产生伪影的缺点, 提出一种基于Tetrolet变换的改进融合算法。 首先, 将可见光图像转换到lαβ颜色空间得到三个几乎不相关的彩色通道; 然后对其l分量和红外图像分别进行Tetrolet变换, 对于低通系数引入邻域能量及其接近度的融合规则。 而对Tetrolet系数采用伪随机傅里叶矩阵进行观测并加权融合其观测值; 接下来对融合后观测值采用CoSaMP优化算法迭代出融合后的Tetrolet系数, 并经Tetrolet重构得到融合后的灰度图像; 最后将灰度图像映射到RGB颜色空间获得最终的融合图像。 实验证明了本文算法的有效性。

Abstract

The present study an improved fusion algorithm was proposed based on the Tetrolet transform. It was used to solve the problems that the infrared and visible light images fusion speed is slow, the contrast of the fused image is low and it is easy to bring artifacts to the fused image. First of all, the visible light image was converted to the lαβ color space to get three irrelevant color channels. Secondly, the component l and infrared image were decomposed by the Tetrolet transform. The neighborhood energy and proximity were introduced to the low-pass coefficients fusion rule. The Tetrolet coefficients were observed by the pseudo-random Fourier matrix. The observation value was weightedly fused. Thirdly, the fused observation value were iterated by the CoSaMP optimization algorithm to get the fused Tetrolet coefficient. The fused gray image was got after the Tetrolet reconstruction. Finally, the final fused image was obtained by mapping the grey image to the RGB color space. The experiment results testified the algorithm validity for the image fusion.

中国激光微信矩阵
补充资料

中图分类号:TN219

DOI:10.3964/j.issn.1000-0593(2013)06-1506-06

基金项目:国家自然科学基金项目(60962004, 61162016), 甘肃省科技攻关计划基金项目(0708GKCA047), 甘肃省青年科技基金计划项目(1107RJYA017), 兰州交通大学青年基金项目(2012003)资助

收稿日期:2013-01-16

修改稿日期:2013-04-05

网络出版日期:--

作者单位    点击查看

沈瑜:兰州交通大学电子与信息工程学院, 甘肃 兰州730070
党建武:兰州交通大学电子与信息工程学院, 甘肃 兰州730070
冯鑫:重庆工商大学机械工程学院, 重庆400067
王阳萍:兰州交通大学电子与信息工程学院, 甘肃 兰州730070
侯越:兰州交通大学电子与信息工程学院, 甘肃 兰州730070

联系人作者:沈瑜(shenyu_sy@163.com)

备注:沈瑜, 女, 1982年生, 兰州交通大学电子与信息工程学院讲师

【1】GAO Shao-shu, JIN Wei-qi, WANG Xia. Spectroscopy and Spectral Analysis, 2012, 32(12): 3197.

【2】Pan Hong, Li Xiaobing, Jin Lizuo. Journal of Infrared and Millimeter Waves, 2011, 30(1): 85.

【3】Krommweh Jens, Ma Jianwei. Signal Processing, 2010, 90(8): 2529.

【4】CHEN Yuan, ZHANG Rong, YIN Dong(陈原, 张荣, 伊东). Journal of Electronics & Information Technology(电子与信息学报), 2012, 34(2): 261.

【5】PENG Zhou, TANG Lin-bo, ZHAO Bao-jun, et al(彭洲, 唐林波, 赵保军, 等). Systems Engineering and Electronics(系统工程与电子技术), 2011, 33(11): 2536.

【6】Candes E, Romberg J, Tao T. IEEE Trans. Inform. Theory, 2006, 52(2): 489.

【7】ZHANG Qiang, GUO Bao-long(张强, 郭宝龙). Journal of Infrared and Millimeter Waves(红外与毫米波学报), 2007, 26(6): 185.

【8】Li X, Qin S Y. In IET Image Process, 2011, 5(2): 141.

【9】Ruderman D L, Cronin T W, Chiao C C. Journal of the Optical Society of America, 1998, 15(8): 2036.

【10】Krommweh J. Journal of Visual Communication and Image Representation, 2010, 21(4): 364.

【11】Needell D, Tropp J A. Applied and Computational Harmonic Analysis, 2008, 26(3): 301.

【12】Candes E J, Romberg J. Inverse Problem, 2007, 23(23): 969.

【13】CoSaMP. http://dsp.rice.edu/cs.

引用该论文

SHEN Yu,DANG Jian-wu,FENG Xin,WANG Yang-ping,HOU Yue. Infrared and Visible Images Fusion Based on Tetrolet Transform[J]. Spectroscopy and Spectral Analysis, 2013, 33(6): 1506-1511

沈瑜,党建武,冯鑫,王阳萍,侯越. 基于Tetrolet变换的红外与可见光融合[J]. 光谱学与光谱分析, 2013, 33(6): 1506-1511

被引情况

【1】王忆锋. 2013年的中国红外技术(中). 红外技术, 2014, 36(2): 89-101

【2】冯鑫. Tetrolet框架下红外与可见光图像融合. 光子学报, 2019, 48(2): 210001--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF