首页 > 论文 > 光子学报 > 42卷 > 7期(pp:805-811)

光纤布喇格光栅器件应力疲劳评价理论研究

Investigation on Evaluation Theory of Fiber Bragg Grating Tensile Fatigue Property

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

光纤布喇格光栅器件应力疲劳特性严重影响着光纤光栅应变传感器的长期可靠性,为了评估光纤光栅器件的应力疲劳特性,分析了光纤光栅应变传感器的封装结构对疲劳评价的影响,并以表面直接粘接的简化模型评估了光纤光栅器件的应力疲劳特性.从简化模型的基本力学与光学特性出发,提出以光谱特性的边模抑制比和带宽作为评价光纤光栅器件疲劳的指标体系,以传感特性的灵敏度、线性度和应变传递效率作为评价粘接层疲劳的指标体系.设计了基于等强度梁的光纤光栅器件加速疲劳实验,疲劳的应力幅度为500微应变,频率为18赫兹;1000万次疲劳实验后,三支光纤光栅的带宽平均增加2.07%,平均应变传递效率和平均灵敏度分别下降4.5%和3.9%,实验结果说明提出的指标体系能有效地区分粘接层和光纤光栅的疲劳,从而验证了该评价理论的可行性.

Abstract

Fiber Bragg Grating(FBG) tensile fatigue property seriously affects the long term reliability of FBG strain sensors. To evaluate FBG tensile fatigue property, the package of FBG sensors is analyzed, and the surface mounting FBG is selected to study the FBG tensile fatigue property. To distinguish the tensile fatigue signal of FBG from the bonding layer, the property of the grating reflection spectrum is proposed as the evaluation index of FBG, and sensing characteristics is proposed as the evaluation index of bonding layer. The grating reflection spectrum evaluation index includes side mode suppression ratio and the 3 dB bandwidth. And the sensing characteristics evaluation index includes sensitivity, linearity and the strain transfer efficiency rate. To verify this theory, an experiment based on equal strength beam is conducted, in which the amplitude of “AC” strain is 500 micro strains, and the frequency is 18 Hz. After 10 million tensile fatigue tests on three FBG sensors, the average bandwidth increase 2.07%, the strain transfer efficiency rate decrease 4.5%, and the sensitivity decrease 3.9%. The experiment results show that this theory is workable.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN253

DOI:10.3788/gzxb20134207.0805

基金项目:国家自然科学基金(No.50975301)资助

收稿日期:2013-04-28

修改稿日期:2013-06-05

网络出版日期:--

作者单位    点击查看

舒岳阶:重庆大学 光电技术及系统教育部重点实验室, 重庆 400044
陈伟民:重庆大学 光电技术及系统教育部重点实验室, 重庆 400044
章鹏:重庆大学 光电技术及系统教育部重点实验室, 重庆 400044
刘浩:重庆大学 光电技术及系统教育部重点实验室, 重庆 400044
张伟:重庆大学 光电技术及系统教育部重点实验室, 重庆 400044
刘显明:重庆大学 光电技术及系统教育部重点实验室, 重庆 400044

联系人作者:舒岳阶(shuyuejie@yeah.net)

备注:舒岳阶(1989-),男,博士研究生,主要研究方向为光纤光栅传感技术.

【1】RAO Yun-jiang. In-fibre Bragg grating sensors[J]. Measurement Science and Technology, 1997, 8(4): 355-375.

【2】RAO Yun-jiang. Recent progress in applications of in-fibre Bragg GRATING Sensors[J]. Optics and Lasers in Engineering, 1999, 31(4): 297-324.

【3】KAPRON F P, YUCE H H. Theory and Measurement for Predicting Stressed Fiber Lifetime[J]. Optical Engineering, 1994, 30(6): 700-708.

【4】ANG J, LI H C H, HERSZBERG I, et al. Tensile fatigue properties of fibre Bragg grating optical fibre sensors[J]. International Journal of Fatigue, 2010, 32(4): 762-768.

【5】HUANG Guo-jun, YIN Yun-guo, DAI Feng, et al. Investigation on the sensibility and fatigue reliability of fiber Bragg grating strain sensors[J]. Laser Journal, 2003, 24(6): 45-47.
黄国君,殷昀虢,戴锋,等.光纤布喇格光栅应变传感器的灵敏性及疲劳可靠性研究[J].激光杂志,2003,24(6): 45-47.

【6】WEI Shi-ming, CHAI Jing. A method of fiber Bragg grating sensing in rock deformation and damage test[J]. Journal of Henan Polytechnic University (Natural Science), 2010, 29(2): 233-238.
魏世明,柴敬.岩石变形破坏过程的光纤光栅传感检测方法研究[J].河南理工大学学报(自然科学版),2010,29(2):233-238.

【7】WEI Shi-ming, CHAI Jing. Study of application of optical fiber Bragg grating sensing to uniaxial compression experiments of rock[J]. Rock and Soil Mechanics, 2008, 29(11): 3174-3177.
魏世明,柴敬.岩石单轴压缩光纤光栅传感检测方法研究[J].岩土力学,2008,29(11): 3174-3177.

【8】ZHOU Zhi, ZHAO Xue-feng, WU Zhan-jun, et al. Study on FBG sensors steel capillary encapsulating technique and sensing properties[J].Chinese Journal of Lasers, 2002, 29(12): 1089-1092.
周智,赵雪峰,武湛君,等.光纤光栅毛细钢管封装工艺及其传感特性研究[J].中国激光,2002,29(12):1089-1092.

【9】WAN Li-bing, ZHANG Bo-ming, WANG Dian-fu, et al. Research on fiber Bragg grating strain sensor for structural health monitoring[J]. Laser Journal, 2002, 23(4): 47-48.
万里冰,张博明,王殿富,等.结构健康监测用光纤布喇格光栅应变传感器研究[J].激光杂志,2002,23(4):47-48.

【10】HU Shu-yang, ZHAO Qi-da, HE Shi-ya, et al. Strain measurement in construction steel bar using a FBG sensor coated by a thin metal tube[J]. Journal of Optoelectronics·Laser, 2004, 15(6): 688-690.
胡曙阳,赵启大,何士雅,等.金属管封装光纤光栅用于建筑钢筋应变的测量[J].光电子·激光,2004,15(6):688-690.

【11】ZHOU Zhi, LI Ji-long, OU Jin-ping. Interface strain transfer mechanism and error modification of embedded FBG strain sensors[J]. Journal of Harbin Institute of Technology, 2006, 38(1): 49-55.
周智,李冀龙,欧进萍.埋入式光纤光栅界面应变传递机理与误差修正[J].哈尔滨工业大学学报, 2006,38(1):49-55.

【12】CHEN C P, LEE J R, CHANG C N. Fracture mirror of optical fibers[J].Materials Chemistry and Physics, 2003, 82(3): 698-704.

【13】HUANG Hong-mei, YUAN Shen-fang. Study on the spectral response of fiber Bragg grating sensor under non-uniform strain distribution in structural health monitoring[J]. Optoelectronics Letters, 2011, 7(2): 109-112.

【14】YUN Bin-feng, L Chang-gui, WANG Zhu-yuan, et al. Numerical analysis of fiber Bragg grating under inhomogeneous strain fields[J]. Journal of Optoelectronics·Laser, 2006, 17(2): 151-154.
恽斌峰,吕昌贵,王著元,等.非均匀应变场中光纤布喇格光栅的数值分析[J].光电子·激光,2006,17(2):151-154.

【15】YANG Guo-fu. Spectral characteristic analysis of FBG under the transverse inhomogeneous strain field[J]. Chinese Journal of Sensors and Actuators, 2007, 20(5): 1021-1024.
杨国福.横向非均匀应变作用下光纤光栅的特性分析[J].传感技术学报,2007,20(5):1021-1024.

【16】CHEN Zhen-min, CHEN Jun, SHU Rui-jun. Simulation and reconstruction for nonuniform strain profile of fiber Bragg grating sensor[J]. Chinese Journal of Sensors and Actuators, 2006, 19(6): 2399-2404.
陈哲敏,陈军,舒睿俊.Bragg光纤光栅传感器内不均匀应力分布的模拟和重构[J].传感技术学报,2006,19(6):2399-2404.

引用该论文

SHU Yue-jie,CHEN Wei-min,ZHANG Peng,LIU Hao,ZHANG Wei,LIU Xian-ming. Investigation on Evaluation Theory of Fiber Bragg Grating Tensile Fatigue Property[J]. ACTA PHOTONICA SINICA, 2013, 42(7): 805-811

舒岳阶,陈伟民,章鹏,刘浩,张伟,刘显明. 光纤布喇格光栅器件应力疲劳评价理论研究[J]. 光子学报, 2013, 42(7): 805-811

被引情况

【1】张斌,朱昊天,何如双,陶卫东,潘雪丰,董建峰. 基于长周期光纤光栅迈克耳孙干涉仪的溶液饱和点测量. 光子学报, 2014, 43(9): 906006--1

【2】陶传义,魏鹤鸣. 基于半导体光纤环形激光器的光纤布喇格光栅动态应变传感系统. 光子学报, 2016, 45(7): 70706002--1

【3】王楚虹,陈伟民,傅志芳,张伟,雷小华,刘显明. 光纤光栅自动化金属粘接性能. 光子学报, 2016, 45(8): 806003--1

【4】舒岳阶,吴俊,周世良,周远航. FBG应变传感器应力疲劳极限传感寿命评估方法. 光子学报, 2018, 47(1): 106002--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF