Photonics Research, 2013, 1 (1): 01000028, Published Online: Jul. 17, 2013  

Microscopic and macroscopic manipulation of gold nanorod and its hybrid nanostructures [Invited] Download: 993次

Author Affiliations
Laboratory of Optical Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract
Gold nanorods (GNRs) have potential applications ranging from biomedical sciences and emerging nanophotonics. In this paper, we will review some of our recent studies on both microscopic and macroscopic manipulation of GNRs. Unique properties of GNR nanoparticles, such as efficient surface plasmon amplifications effects, are introduced. The stable trapping, transferring, positioning and patterning of GNRs with nonintrusive optical tweezers will be shown. Vector beams are further employed to improve the trapping performance. On the other hand, alignment of GNRs and their hybrid nanostructures will be described by using a film stretch method, which induces the anisotropic and enhanced absorptive nonlinearities from aligned GNRs. Realization and engineering of polarized emission from aligned hybrid GNRs will be further demonstrated, with relative excitation–emission efficiency significantly enhanced. Our works presented in this review show that optical tweezers possess great potential in microscopic manipulation of metal nanoparticles and macroscopic alignment of anisotropic nanoparticles could help the macroscopic samples to flexibly represent the plasmonic properties of single nanoparticles for fast, cheap, and high-yield applications.

Jiafang Li, Honglian Guo, Zhi-Yuan Li. Microscopic and macroscopic manipulation of gold nanorod and its hybrid nanostructures [Invited][J]. Photonics Research, 2013, 1(1): 01000028.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!