首页 > 论文 > 光学学报 > 33卷 > 9期(pp:922005--1)

16~22 nm极紫外光刻物镜工程化设计

Manufacturable Design of 16~22 nm Extreme Ultraviolet Lithographic Objective

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

极紫外光刻是16~22 nm光刻技术节点的候选技术之一,其投影物镜设计需在满足像质和分辨率要求的前提下,兼顾工程可实现性。在考虑加工、检测和制造约束的情况下,设计了像方数值孔径分别为0.3和0.32、曝光视场为26 mm×1.5 mm的极紫外光刻投影物镜。详细分析和比较了两套物镜的光学性能和可制造性。结果表明,两套物镜结合分辨率增强技术可分别满足22 nm和16 nm光刻技术节点的性能要求。

Abstract

Extreme ultraviolet lithography is one of the promising technologies for 16~22 nm node of lithography. Design of the extreme ultraviolet lithographic projection objective needs not only to meet the demand of imaging quality and resolution but also to consider the manufacturability. Two projection objectives with numerical apertures of 0.3 and 0.32, respectively, are designed in the 26 mm×1.5 mm exposure area to meet the demands of manufacture, measurement and fabrication. The optical performance and manufacturability of the two projection objectives are analyzed and compared in detail. Combining with the resolution enhancement technology, the two projection objectives can meet the requirements of 22 nm and 16 nm node of lithography.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN305.7

DOI:10.3788/aos201333.0922005

所属栏目:光学设计与制造

基金项目:国家科技重大专项(2012ZX02702001-002)

收稿日期:2013-03-27

修改稿日期:2013-05-28

网络出版日期:--

作者单位    点击查看

曹振:北京理工大学光电学院光电成像技术与系统教育部重点实验室, 北京 100081
李艳秋:北京理工大学光电学院光电成像技术与系统教育部重点实验室, 北京 100081
刘菲:北京理工大学光电学院光电成像技术与系统教育部重点实验室, 北京 100081

联系人作者:曹振(feifei4150@yahoo.com.cn)

备注:曹振(1986—),男,博士研究生,主要从事极紫外光刻光学系统设计方面的研究。

【1】Hans Meiling, Vadim Banine, Noreen Harned, et al.. Development of the ASML EUV alpha demo tool [C]. SPIE, 2005, 5751: 90-98.

【2】Katsuhiko Murakami, Tetsuya Oshino, Hiroyuki Kondo, et al.. Development of optics for EUV lithography tools [C]. SPIE, 2008,6517: 65170J.

【3】Hans Meiling, Henk Meijer, Vadim Banine, et al.. First performance results of the ASML alpha demo tool [C]. SPIE, 2006, 6151: 615108.

【4】Hans Meiling, Nico Buzing, Kevin Cummings, et al.. EUVL system moving towards production [C]. SPIE, 2009, 7271: 727102.

【5】Christian Wagner, Noreen Harned, Peter Kuerz, et al.. EUV into production with AMSL′s NXE platform [C]. SPIE, 2010,7636: 76361H.

【6】Li Yanqiu. Optical performance of extreme ultraviolet lithography for 50 nm generation [J]. Acta Optica Sinica, 2004, 24(7): 865-868.
李艳秋. 50 nm分辨力极端紫外光刻物镜光学性能研究[J]. 光学学报, 2004, 24(7): 865-868.

【7】Yang Xiong, Xing Tingwen. Design of extreme-ultraviolet lithographic objectives [J]. Acta Optica Sinica, 2009, 29(9): 2520-2523.
杨雄, 邢廷文. 极紫外投影光刻物镜设计[J]. 光学学报, 2009, 29(9): 2520-2523.

【8】Liu Fei, Li Yanqiu. Design of high numerical aperture projection objective for industrial extreme ultraviolet lithography [J]. Acta Optica Sinica, 2011, 31(2): 0222003.
刘菲, 李艳秋. 大数值孔径产业化极紫外投影光刻物镜设计[J]. 光学学报, 2011, 31(2): 0222003.

【9】Takaharu Miura, Katsuhiko Murakami, Hidemi Kawai, et al.. Nikon EUVL development progress update [C]. SPIE, 2010, 7636: 76361G.

【10】Lawrence Berkeley National Laboratory′s Center for X-Ray Optics. Interactions with Matter: The Index of Refraction for a Compound Material [DB/OL]. [2013-03-20]. http://henke.lbl.gov/optical_constants/.

【11】Hans Meiling, Jos Benschop, Rob Hartman, et al.. EXTATIC: ASML′s α-tool development for EUVL [C]. SPIE, 2002, 4688: 59-62.

【12】Takahiro Sasaki. Projection Optical System Exposure Apparatus and Device Fabricating Method: U. S., 7554649 [P]. 2009-06-30.

【13】Rusell Hudyma, Hans-Jurgen Mann, Udo Dinger, Projection System for EUV Lithography: U. S., 7375798B2 [P]. 2008-05-20.

【14】Holger Glatzel, Dominic Ashworth, Mark Bremer, et al.. Projection optics for extreme ultraviolet lithography micro field exposure tools with a numerical aperture of 0.5 [C]. SPIE, 2013, 8679: 867917.

【15】Matthieu F Bal, Florian Bociort, Joseph J M Braat. Analysis search and classification for reflective ring-field projection systems [J]. Appl Opt, 2003, 42(13): 2301-2311.

【16】Oana Elena Marinescu. Novel Design Methods for High-Quality Lithographic Objectives [D]. Delft: Delft University of Technology, 2006, 81-86.

【17】Xu Weicai, Huang Wei, Yang Wang. Magnification tolerancing and compensation for the lithographic projection lens [J]. Acta Optica Sinica, 2011, 31(11): 1122003.
许伟才, 黄玮, 杨旺. 投影光刻物镜倍率的公差分析与补偿[J]. 光学学报, 2011, 31(11): 1122003.

引用该论文

Cao Zhen,Li Yanqiu,Liu Fei. Manufacturable Design of 16~22 nm Extreme Ultraviolet Lithographic Objective[J]. Acta Optica Sinica, 2013, 33(9): 0922005

曹振,李艳秋,刘菲. 16~22 nm极紫外光刻物镜工程化设计[J]. 光学学报, 2013, 33(9): 0922005

被引情况

【1】王君,金春水,王丽萍,郭本银,喻波. 极紫外光刻投影物镜中多层膜分析模型的建立及应用. 光学学报, 2014, 34(8): 811002--1

【2】彭石军,苏东奇,苗二龙. 离焦补偿算法提高曲率半径测量精度的研究. 激光与光电子学进展, 2015, 52(5): 51204--1

【3】陈进新,吴晓斌,王宇. 极紫外辐照损伤测试系统光学仿真研究. 激光与光电子学进展, 2015, 52(6): 62201--1

【4】王辉,周烽,喻波,谢耀,于杰,刘钰,王丽萍. 基于面形检测的光学元件多层膜均匀性测量. 中国激光, 2015, 42(7): 708010--1

【5】柯杰,张军勇. 斐波那契光子筛的聚焦成像特性. 光学学报, 2015, 35(9): 923001--1

【6】孙圆圆,李艳秋,曹振. 超大数值孔径极紫外光刻物镜的公差分析. 激光与光电子学进展, 2015, 52(12): 122207--1

【7】王君,王丽萍,金春水,苗亮,谢耀. 极紫外光刻物镜分组可视化界面设计优化. 光学学报, 2015, 35(12): 1211001--1

【8】曹振,李艳秋,孙圆圆. 极紫外光刻物镜补偿器的选择及定位精度分析. 光学学报, 2015, 35(12): 1211003--1

【9】柯杰,张军勇. 斐波那契光子筛的聚焦成像特性. 高功率激光及等离子体物理研究论文集(专题), 2015, 13(1): 923001--1

【10】李艳秋,刘岩,刘丽辉. 16 nm极紫外光刻物镜热变形对成像性能影响的研究. 光学学报, 2019, 39(1): 122001--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF