首页 > 论文 > 强激光与粒子束 > 25卷 > 9期(pp:2471-2476)

正对电极结构碳化硅光导开关的电路模型

Circuit modeling of vertical geometry SiC photoconductive semiconductor switches

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

利用SilvacoTCAD软件,在532 nm激光辐照下,对正对电极结构6HSiC光导开关(SiCPCSS)瞬态电流电场的分布及不同光功率下的伏安特性进行了仿真。结果表明:载流子速率在强场下达到饱和,并且电流电场在主要电流区域沿垂直于激光辐照方向均匀分布。提出SiCPCSS电路模型的建模依据,可以近似条件化简得到PCSS电阻一般表达式的解,建立SiCPCSS载流子迁移率随电场变化的PSpice模型,分析讨论了外电路参数对SiCPCSS导通过程的影响。该模型模拟结果与已有实验结果吻合良好。

Abstract

Compact vertical geometry photoconductive semiconductor switches (PCSS) made from SiC are promising candidates for high power switching. Silvaco TCAD is used to simulate the timeresolved electric field current distribution and voltampere characteristics of different light power in vertical geometry Vdoped semiinsulated 6HSiC photoconductive switches excited by 532 nm laser. The simulation shows that the carriers drift velocity with increasing field saturates at a constant velocity, and the timeresolved electric field current is uniformly distributed along the major electric field current direction that is perpendicular to laser incidence direction. With the simplification of semiconductor equations based on the Silvaco TCAD simulations, a SiCPCSS circuit model has been developed in consideration of carrier field dependent mobility. With the help of the validation in reported experiment, the influence of exterior electric parameters is discussed by using the SiCPCSS circuit model.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TM836

DOI:10.3788/hplpb20132509.2471

所属栏目:脉冲功率技术

收稿日期:2013-02-27

修改稿日期:2013-04-25

网络出版日期:--

作者单位    点击查看

王朗宁:国防科学技术大学 光电科学与工程学院, 长沙 410073
荀涛:国防科学技术大学 光电科学与工程学院, 长沙 410073
杨汉武:国防科学技术大学 光电科学与工程学院, 长沙 410073

联系人作者:王朗宁(wanglangning@126.com)

备注:王朗宁(1988—),男,硕士研究生,从事脉冲功率相关技术研究

【1】Nunnally W C, Mazzola M. Opportunities for employing silicon carbide in high power photoswitches[C]//Proc of 14th IEEE International Pulsed Power Conference. 2003:823-826.

【2】袁建强,谢卫平,周良骥,等.光导开关研究进展及其在脉冲功率技术中的应用[J].强激光与粒子束, 2008, 20(1):171-176.(Yuan Jianqiang, Xie Weiping, Zhou Liangji, et al. Developments and applications of photoconductive semiconductor switches in pulsed power technology. High Power Laser and Particle Beams, 2008, 20(1):171-176)

【3】Nunnally W C. Critical component requirements for compact pulse power system architectures[J]. IEEE Trans on Plasma Sci, 2005, 33(4):1262-1267.

【4】黄维,常少辉,陈之战,等.11 kV大功率SiC光电导开关导通特性[J].强激光与粒子束, 2010, 22(3):511-514.(Huang Wei, Chang Shaohui, Chen Zhizhan, et al. Onstate characteristics of an 11 kV highpower SiC photoconductive semiconductor switch. High Power Laser and Particle Beams, 2010, 22(3):511-514)

【5】Sullivan J S, Stanley J R. 6HSiC photoconductive switches triggered at below band gap wavelengths[J]. IEEE Trans on Dielectrics and Electrical Insulation, 2007, 14(4):980-985.

【6】Sullivan J S, Stanley J R. Wide band gap extrinsic photoconductive switches [J]. IEEE Trans on Plasma Science, 2008, 36(5):2528-2532.

【7】来定国,谢霖燊.Pspice子模块在脉冲功率装置电路模拟中的应用[J].强激光与粒子束, 2012, 24(3):689-692.(Lai Dingguo, Xie Linshen. Applications of Pspice subcircuit simulation of pulsed power device. High Power Laser and Particle Beams, 2012, 24(3):689-692)

【8】黄子平,王文斗.非线性含磁芯线圈的PSpice模拟[J].强激光与粒子束, 2004,16(8):1063-1066.(Huang Ziping, Wang Wendou. Simulation of nonlinear winding with magnetic core by PSpice. High Power Laser and Particle Beams, 2004, 16(8):1063-1066)

【9】黄涛,丛培天,张国伟,等.“强光一号”加速器电路模拟与分析[J].强激光与粒子束, 2010, 22(4):897-900.(Huang Tao, Cong Peitian, Zhang Guowei, et al. Circuit simulation and analysis for QiangguangⅠaccelerator. High Power Laser and Particle Beams, 2010, 22(4):897-900)

【10】Warren T, Matheus L. Modeling nonlinear pulsed power components behaviors[C]//Proc of 8th IEEE International Pulsed Power Conference. 1991.

【11】Mayes J R, Nunnally W C. Analytical modeling of a linear GaAs photoconductive switch for short pulse excitation[C]//Proc of 12th IEEE International Pulsed Power Conference. 1999:1207-1210.

【12】Kelkar K S, Islam N E, Fessler C M, et al. Design and characterization of silicon carbide photoconductive switches for high field applications[J]. Journal of Applied Physics, 2006, 100:124905.

【13】Kelkar K S, Islam N E, Fessler C M, et al. Silicon carbide photoconductive switch for high power, linear mode operation through subband gap triggering[J]. J Appl Phys, 2005, 98:093102.

【14】Kelkar K S, Islam N E, Kirawanich P, et al. Onstate characteristics of a highpower photoconductive switch fabricated from compensated 6H silicon carbide[J]. IEEE Trans on Plasma Sci, 2008, 36(1):287-292.

【15】Silvaco International Inc. Atlas user’s manual: Device simulation software[K]. www.silvaco.com.

【16】常少辉,刘学超,黄维,等.正对电极结构型碳化硅光导开关的制备与性能研究[J].无机材料学报, 2012, 27(10):1058-1062.(Chang Shaohui, Liu Xuechao, Huang Wei, et al. Preparation and properties of lateral contact structure SiC photoconductive semiconductor switches. Journal of Inorganic Materials, 2012, 27(10):1058-1062)

引用该论文

Wang Langning,Xun Tao,Yang Hanwu. Circuit modeling of vertical geometry SiC photoconductive semiconductor switches[J]. High Power Laser and Particle Beams, 2013, 25(9): 2471-2476

王朗宁,荀涛,杨汉武. 正对电极结构碳化硅光导开关的电路模型[J]. 强激光与粒子束, 2013, 25(9): 2471-2476

被引情况

【1】周天宇,刘学超,代冲冲,黄维,施尔畏. V掺杂6H-SiC光导开关制备与性能研究. 强激光与粒子束, 2014, 26(4): 45043--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF