首页 > 论文 > 中国激光 > 40卷 > 10期(pp:1002009--1)

一种新型的基于PPLN的多波长中红外激光光源

A Novel Multi-Wavelength Mid-Infrared Difference Frequency Generation Laser Source Based on PPLN

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

提出了一种新型的基于PPLN晶体的多波长中红外差频产生(DFG)光源的设计方案。针对1060 nm和1550 nm两个波段的基频光源组合,采用晶体的分段温度控制技术获得了具有多峰结构的抽运光/闲频光准相位匹配(QPM)调谐曲线。通过改变分段晶体的温度调控抽运光QPM峰的位置,实现中红外多波长DFG光源的调谐输出。理论研究结果显示当PPLN晶体分成长度相等的两个温度控制段,且信号光波长设定为1.58 \mm,分段晶体区间的温度分别设定为20 ℃和60 ℃时,抽运光波长区域存在4个QPM峰,对应的中红外闲频光QPM峰的中心波长分别位于2.95,3.03,3.75,3.83 μm处。当分段晶体区间的温度改变为50 ℃和90 ℃时,相应中红外闲频光QPM峰分别平移至3.01,3.11,3.67,3.77 μm处。该研究结果可为设计和研制多波长宽调谐中红外DFG光源提供参考。

Abstract

A novel difference frequency generation (DFG) scheme for simultaneously achieving multi-wavelength mid-infrared (mid-IR) emissions based on a bulk PPLN crystal is proposed. For the combination of 1060 nm and 1550 nm wavelength band fundamental light sources, multiple pump quasi-phase-matching (QPM) peaks can be obtained by using the segmented temperature controlling techniques on a PPLN chip. Moreover, the multiple pump QPM peaks can be widely tuned by adjusting the segmented crystal temperatures and thus the tunability for the generated multiple mid-IR wavelengths is realized. Our simulated results show that when the PPLN crystal are evenly divided into two sections for temperature controlling, four pump QPM peaks are simultaneously reached, corresponding to the mid-IR idler QPM peaks at 2.95, 3.03, 3.75, 3.83 μm, as the signal wavelength setting at 1.58 μm and the segmented crystal temperatures setting at 20 ℃ and 60 ℃, respectively. When the segmented crystal temperatures are adjusted to 50 ℃ and 90 ℃, the idler QPM peak positions in the mid-IR DFG output spectrum are changed to 3.01, 3.11, 3.67, 3.77 μm. Such results may provide reference and guidance for design and development of widely tunable multi-wavelength DFG light sources.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O437

DOI:10.3788/cjl201340.1002009

所属栏目:激光物理

责任编辑:宋梅梅  信息反馈

基金项目:国家自然科学基金(11374161)、江苏省气象探测与信息处理重点实验室开放基金(KDXS1206)、江苏省传感网与现代气象装备优势学科、2012年度国家级大学生创新创业训练计划

收稿日期:2013-04-12

修改稿日期:2013-05-20

网络出版日期:--

作者单位    点击查看

常建华:南京信息工程大学, 江苏省气象探测与信息处理重点实验室, 江苏 南京 210044
杨镇博:南京信息工程大学, 江苏省气象探测与信息处理重点实验室, 江苏 南京 210044
陆洲:南京信息工程大学, 江苏省气象探测与信息处理重点实验室, 江苏 南京 210044
董时超:南京信息工程大学, 江苏省气象探测与信息处理重点实验室, 江苏 南京 210044

联系人作者:常建华(jianhuachang@nuist.edu.cn)

备注:常建华(1976—),男,博士,副教授,主要从事非线性光频转换和气体光谱检测应用等方面的研究。

【1】K P Petrov, R F Curl, F K Tittel. Compact laser difference frequency spectrometer for multicomponent trace gas detection[J]. Appl Phys B, 1998, 66(5): 531-538.

【2】Wang Liusan, Cao Zhensong, Wang Huan, et al.. A widely tunable mid-infrared difference frequency generation laser and its detection of atmospheric water[J]. Acta Optica Sinica, 2011, 31(4): 0414003.
汪六三, 曹振松,王欢, 等. 宽调谐中红外差频激光及大气水汽浓度探测[J]. 光学学报, 2011, 31(4): 0414003.

【3】L Ciaffoni, R Grilli, G Hancock, et al.. 3.5-μm high-resolution gas sensing employing a LiNbO3 OPM-DFG waveguide module[J]. Appl Phys B, 2009, 94(3): 517-525.

【4】Yao Wenming, Tan Huiming, Wang Fan, et al.. Extra-cavity, all-solid-state continuous wave optical parametric oscillator and stimulated Raman scattering in PPMgLN[J]. Chinese J Lasers, 2012, 39(12): 1202008.
姚文明, 檀慧明, 王帆, 等. 外腔全固态连续波PPMgLN光学参量振荡器与受激拉曼散射[J]. 中国激光, 2012, 39(12): 1202008.

【5】Liu Lei, Li Xiao, Xiao Hu, et al.. Mid-infrared, singly resonant and continuous-wave optical parametric oscillator pumped by a single-frequency fiber laser[J]. Chinese J Lasers, 2012, 39(1): 0102001.
刘磊, 李宵, 肖虎, 等. 单频光纤激光器抽运的中红外连续单谐振光学参变振荡器[J]. 中国激光, 2012, 39(1): 0102001.

【6】Yu Xingyan, Dai Shixun, Zhou Yaxun, et al.. Theoretical studies on mid-infrared gain characteristics of erbium-doped chalcogenide glass fibers[J]. Chinese J Lasers, 2012, 39(1): 0105003.
於杏燕, 戴世勋, 周亚训, 等. 掺铒硫系玻璃光纤的中红外增益特性模拟研究[J]. 中国激光, 2012, 39(1): 0105003.

【7】M H Chou, K R Parameswaran, M M Fejer, et al.. Multiple-channel wavelength conversion by use of engineered quasi-phase-matching structures in LiNbO3 waveguides[J]. Opt Lett, 1999, 24(16): 1157-1159.

【8】Y W Lee, F C Fan, Y C Huang, et al.. Nonlinear multiwavelength conversion based on an aperiodic optical superlattice in lithium niobate[J]. Opt Lett, 2002, 27(24): 2191-2193.

【9】O Bang, B Clausen, P L Christiansen, et al.. Engineering competing nonlinearities[J]. Opt Lett, 1999, 24(20): 1413-1415.

【10】M Asobe, O Tadanaga, H Miyazawa, et al.. Multiple quasi-phase-matched device using continuous phase modulation of χ(2) grating and its application to variable wavelength conversion[J]. IEEE J Quantum Electron, 2005, 41(12): 1540-1547.

【11】M Asobe, O Tadanaga, T Umeki, et al.. Unequally spaced multiple mid-infrared wavelength generation using an engineered quasi-phase-matching device[J]. Opt Lett, 2007, 32(23): 3388-3390.

【12】J Jiang, J H Chang, S J Feng, et al.. Mid-IR multiwavelength difference frequency generation based on fiber lasers[J]. Opt Express, 2010, 18(5): 4740-4747.

【13】X M Liu, H Y Zhang, Y L Guo, et al.. Optimal design and applications for quasi-phase-matching three-wave mixing[J]. IEEE J Quantum Electron, 2002, 38(9): 1225-1233.

【14】D H Jundt. Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate[J]. Opt Lett, 1997, 22(20): 1553-1555.

【15】J H Chang, Q H Mao, S J Feng, et al.. Theoretical and experimental investigations of the mid-IR DFG tuning property based on fiber laser fundamental lights[J]. Appl Phys B, 2011, 104(4): 851-859.

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF