光学学报, 2013, 33 (10): 1028002, 网络出版: 2013-09-17   

合成孔径激光成像雷达时空散斑效应模拟与分析

Analysis and Simulation of Space-Time Speckle Effect Based on Synthetic Aperture Imaging Ladar
作者单位
1 中国科学院上海光学精密机械研究所,中国科学院空间激光通信及检测技术重点实验室, 上海 201800
2 中国科学院大学, 北京 100049
摘要
合成孔径激光成像雷达(SAIL)中的散斑效应严重影响成像质量。建立了远距离SAIL系统下激光散斑理论模型,分析了产生时空散斑效应的原因并推导了时空散斑效应的数学表达式。给出了由单个目标分辨单元粗糙表面引起的光学天线接收面上的散斑花样,通过具体实例分析了散斑的统计性质。模拟结果表明,散斑平均宽度与合成孔径中的光学足趾尺度相当;一次脉冲啁啾时间内散斑花样在距离向移动的距离等于散斑的平均宽度。通过大口径SAIL演示样机实验,验证了时空散斑效应的距离向波长特性,从而直接认识了SAIL中的散斑效应。模拟结果为实际SAIL系统中利用多口径接收装置抑制散斑效应提供了一定的参考。
Abstract
In synthetic aperture imaging ladar (SAIL), the image quality is seriously degraded by the laser speckle effect. Based on the SAIL system in far-field diffraction region, the physical models of laser speckle effect are established, and the expressions for the intensity of speckles are derived. The reasons of space-time speckle effect are analyzed, and the specific speckle patterns are obtained. Research results indicate the statistical properties by simulating the phase and amplitude distribution of typical space-time speckle patterns. Simulation results show that the average width of speckle pattern equals the scale of footprint in SAIL system. The moving distance of speckle pattern along the range direction during a period of pulse time and the average speckle scale are roughly equivalent. Experiments are conducted on big aperture SAIL. Experimental results confirms the prediction. The vivid space-time speckle effect is firstly demonstrated. Simulation results provide a certain reference to the speckle reduction by using multi-channel transmitter/receiver.

许倩, 周煜, 孙建锋, 孙志伟, 马小平, 职亚楠, 刘立人. 合成孔径激光成像雷达时空散斑效应模拟与分析[J]. 光学学报, 2013, 33(10): 1028002. Xu Qian, Zhou Yu, Sun Jianfeng, Sun Zhiwei, Ma Xiaoping, Zhi Ya′nan, Liu Liren. Analysis and Simulation of Space-Time Speckle Effect Based on Synthetic Aperture Imaging Ladar[J]. Acta Optica Sinica, 2013, 33(10): 1028002.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!