首页 > 论文 > Photonics Research > 1卷 > 3期(pp:124-129)

Flood-illuminated adaptive optics ophthalmoscope with a single curved relay mirror

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

For decreasing light loss and diminishing the aberrations of the optical system, an open-loop adaptive optics (AO) system for retinal imaging in vivo is introduced. Taking advantage of the ability of young human eyes to accommodate, there was only one single curved mirror to make the pupil of the eye conjugate with the wavefront corrector and the wavefront sensor. A liquid crystal spatial light modulator (LC-SLM) was adopted as the wavefront corrector because the LC-SLM can be made in a small size to match the sensor. To reduce a pair of lenses or focusing mirrors, the wavefront corrector and sensor are positioned in the noncommon path. The system adopts open-loop control and the high-precision LC-SLM guarantees the effectiveness of the AO system. The designed field of view is 1° on the retina (about 300 μm). The image quality was simulated with different mirror surface types, including circular, parabolic, and hyperbolic. A hyperbolic mirror with conic constant -1.07, which is close to -1, could best eliminate the aberrations. Theoretical analysis showed that the optical throughput of this system was at least 22.4% higher than that of a standard transmission AO system. In a practical experiment, a parabolic mirror was positioned in the optical path. Images of the cone photoreceptors and the capillary vessels were obtained successfully. This system simplifies the optical setup in comparison to the commonly used 4F systems while still guaranteeing the effectiveness of AO to correct the ocular aberrations.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.1364/PRJ.1.000124

所属栏目:Adaptive Optics

基金项目:This work was supported by the National Natural Science Foundation of China (Nos. 60736042, 1174274, and 1174279) and the Plan for Scientific and Technology Development of Suzhou, China (No. ZXS201001).

收稿日期:2012-07-05

录用日期:2013-08-01

网络出版日期:--

作者单位    点击查看

Ruixue Liu:State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin 130033, ChinaUniversity of Chinese Academy of Sciences, Beijing 100039, ChinaJiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China
Yue Qi:State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin 130033, ChinaUniversity of Chinese Academy of Sciences, Beijing 100039, ChinaJiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China
Xianliang Zheng:State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin 130033, ChinaUniversity of Chinese Academy of Sciences, Beijing 100039, ChinaJiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China
Mingliang Xia:Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China
Li Xuan:State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin 130033, China

联系人作者:Li Xuan(xuanli_lcao@163.com)

【1】A. Roorda and D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397, 520–522 (1999).

【2】J. I. Wolfing, M. Chung, J. Carroll, A. Roorda, and D. R. Williams, “High-resolution retinal imaging of cone-rod dystrophy,” Ophthalmology 113, 1014 (2006).

【3】J. A. Martin and A. Roorda, “Pulsatility of parafoveal capillary leukocytes,” Exp. Eye Res. 88, 356–360 (2009).

【4】J. M. Gelfand, J. L. Duncan, C. A. Racine, L. A. Gillum, C. T. Chin, Y. Zhang, Q. Zhang, L. J. Wong, A. Roorda, and A. J. Green, “Heterogeneous patterns of tissue injury in NARP syndrome,” J. Neurol. 258, 440–448 (2011).

【5】J. L. Duncan, K. Ratnam, D. G. Birch, S. M. Sundquist, A. S. Lucero, Y. Zhang, M. Meltzer, N. Smaoui, and A. Roorda, “Abnormal cone structure in foveal schisis cavities in X-linked retinoschisis from mutations in exon 6 of the RS1 gene,” Investig. Ophthalmol. Vis. Sci. 52, 9614–9623 (2011).

【6】R. S. Jonnal, O. P. Kocaoglu, Q. Wang, S. Lee, and D. T. Miller, “Phase-sensitive imaging of the outer retina using optical coherence tomography and adaptive optics,” Biomed. Opt. Express 3, 104–124 (2012).

【7】J. L. Duncan, A. Roorda, M. Navani, S. Vishweswaraiah, R. Syed, S. Soudry, K. Ratnam, H. V. Gudiseva, P. Lee, T. Gaasterland, and R. Ayyagari, “Identification of a novel mutation in the CDHR1 Gene in a family with recessive retinal degeneration,” Arch. Ophthalmol. 130, 1301–1308 (2012).

【8】C. Correia, J. P. Veran, and G. Herriot, “Advanced vibration suppression algorithms in adaptive optics systems,” J. Opt. Soc. Am. A 29, 185–194 (2012).

【9】R. Legras, Y. Benard, and N. Lopez-Gil, “Effect of coma and spherical aberration on depth-of-focus measured using adaptive optics and computationally blurred images,” J. Cataract. Refract. Surg. 38, 458–469 (2012).

【10】H. J. Hofer, J. Blaschke, J. Patolia, and D. E. Koenig, “Fixation light hue bias revisited: implications for using adaptive optics to study color vision,” Vis. Res. 56, 49–56 (2012).

【11】H. W. Babcock, “The possibility of compensating astronomical seeing,” Publ. Astron. Soc. Pac. 65, 229–236 (1953).

【12】J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997).

【13】A. Dubra, Y. Sulai, J. L. Norris, R. F. Cooper, A. M. Dubis, D. R. Williams, and J. Carroll, “Noninvasive imaging of the human rod photoreceptor mosaic using a confocal adaptive optics scanning ophthalmoscope,” Biomed. Opt. Express 2, 1864–1876 (2011).

【14】N. Doble, S. S. Choi, J. L. Codona, J. Christou, J. M. Enoch, and D. R. Williams, “In vivo imaging of the human rod photoreceptor mosaic,” Opt. Lett. 36, 31–33 (2011).

【15】A. Roorda, F. Romero-Borja, W. Donnelly, H. Queener, T. Hebert, and M. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10, 405–412 (2002).

【16】D. Miller, L. Thibos, and X. Hong, “Requirements for segmented correctors for diffraction-limited performance in the human eye,” Opt. Express 13, 275–289 (2005).

【17】N. Doble, D. T. Miller, G. Yoon, and D. R. Williams, “Requirements for discrete actuator and segmented wavefront correctors for aberration compensation in two large populations of human eyes,” Appl. Opt. 46, 4501–4514 (2007).

【18】G. D. Love, J. V. Major, and A. Purvis, “Liquid-crystal prisms for tip-tilt adaptive optics,” Opt. Lett. 19, 1170–1172 (1994).

【19】G. D. Love, N. Andrews, P. Birch, D. Buscher, P. Doel, C. Dunlop, J. Major, R. Myers, A. Purvis, R. Sharples, A. Vick, A. Zadrozny, S. R. Restaino, and A. Glindemann, “Binary adaptive optics: atmospheric wave-front correction with a half-wave phase shifter,” Appl. Opt. 34, 6058–6066 (1995).

【20】Y. Zhang, S. Poonja, and A. Roorda, “MEMS-based adaptive optics scanning laser ophthalmoscopy,” Opt. Lett. 31, 1268–1270 (2006).

【21】L. N. Thibos and A. Bradley, “Use of liquid-crystal adaptiveoptics to alter the refractive state of the eye,” Optom. Vis. Sci. 74, 581–587 (1997).

【22】Q. Mu, Z. Cao, D. Li, L. Hu, and L. Xuan, “Liquid Crystal based adaptive optics system to compensate both low and high order aberrations in a model eye,” Opt. Express 15, 1946–1953 (2007).

【23】C. Li, M. Xia, Q. Mu, B. Jiang, L. Xuan, and Z. Cao, “Highprecision open-loop adaptive optics system based on LCSLM,” Opt. Express 17, 10774–10781 (2009).

【24】P. Prieto, E. Fernandez, S. Manzanera, and P. Artal, “Adaptive optics with a programmable phase modulator: applications in the human eye,” Opt. Express 12, 4059–4071 (2004).

【25】Q. Mu, Z. Cao, L. Hu, D. Li, and L. Xuan, “An adaptive optics imaging system based on a high-resolution liquid crystal on silicon device,” Opt. Express 14, 8013–8018 (2006).

【26】C. Li, M. Xia, D. Li, Q. Mu, and L. Xuan, “High-resolution retinal imaging through open-loop adaptive optics,” J. Biomed. Opt. 15, 046009 (2010).

【27】K. Venkateswaran, A. Roorda, and F. Romero-Borja, “Theoretical modeling and evaluation of the axial resolution of the adaptive optics scanning laser ophthalmoscope,” J. Biomed. Opt. 9, 132–138 (2004).

【28】B. Hermann, E. J. Fernandez, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29, 2142–2144 (2004).

【29】Y. Zhang, J. Rha, R. Jonnal, and D. Miller, “Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina,” Opt. Express 13, 4792–4811 (2005).

【30】E. J. Fernandez, B. Povazay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, “Three-dimensional adaptive optics ultrahighresolution optical coherence tomography using a liquid crystal spatial light modulator,” Vis. Res. 45, 3432–3444 (2005).

【31】R. J. Zawadzki, S. M. Jones, S. S. Olivier, M. Zhao, B. A. Bower, J. A. Izatt, S. Choi, S. Laut, and J. S. Werner, “Adaptive-optics optical coherence tomography for high-resolution and highspeed 3D retinal in vivo imaging,” Opt. Express 13, 8532–8546 (2005).

【32】D. A. Atchison and G. Smith, “Chromatic dispersions of the ocular media of human eyes,” J. Opt. Soc. Am. A 22, 29–37 (2005).

【33】K. Grieve, P. Tiruveedhula, Y. Zhang, and A. Roorda, “Multiwavelength imaging with the adaptive optics scanning laser ophthalmoscope,” Opt. Express 14, 12230–12242 (2006).

【34】B. Wang and K. J. Ciuffreda, “Depth-of-focus of the human eye: theory and clinical implications,” Surv. Ophthalmol. 51, 75–85 (2006).

【35】J. Porter, J. E. Lin, K. Thorn, and A. Awwal, Adaptive Optics for Vision Science (Wiley, 2006), pp. 156–157.

【36】J. I. Yellott, “Spectral analysis of spatial sampling by photoreceptors: topological disorder prevents aliasing,” Vis. Res. 22, 1205–1210 (1982).

【37】N. Kong, C. Li, M. Xia, D. Li, Y. Qi, and L. Xuan, “Optimization of the open-loop liquid crystal adaptive optics retinal imaging system,” J. Biomed. Opt. 17, 026001 (2012).

【38】H. Song, Y. Zhao, X. Qi, Y. T. Chui, and S. A. Burns, “Stokes vector analysis of adaptive optics images of the retina,” Opt. Lett. 33, 137–139 (2008).

引用该论文

Ruixue Liu, Yue Qi, Xianliang Zheng, Mingliang Xia, and and Li Xuan, "Flood-illuminated adaptive optics ophthalmoscope with a single curved relay mirror," Photonics Research 1(3), 124-129 (2013)

被引情况

【1】段沐森,吴凡,刘瑞雪. 激光增材制造技术在眼科中的应用. 激光与光电子学进展, 2018, 55(1): 11406--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF