Photonic Sensors, 2013, 3 (3): 224, Published Online: Nov. 14, 2013   

Design of an Optical Water Pollution Sensor Using a Single-Layer Guided-Mode Resonance Filter

Author Affiliations
Department of Physics, Birzeit University, Birzeit, Palestine
Abstract
The optical characteristics of a simple, planar, single layer, dielectric Mg-based guided mode resonance filter (GMRF) were investigated by means of rigorous-coupled wave analysis (RCWA). This filter has great potential for real-life applications, especially as bio- and environmental sensors. The structure of the proposed sensor is compact, and all of its layers can be grown in a single process. In this paper, we present results on the design of a water pollution sensor in the violet region of the visible spectrum. The spectral and angular sensitivities of the sensor for both the transverse electric (TE) and transverse magnetic (TM) polarization modes were estimated and compared for various regions in the violet spectrum. A spectral response characterized with a narrow bandwidth and low reflection side bands was realized by carrying out extensive parameter search and optimization. Optimal spectral and angular sensitivities were found for the sensor with a grating thickness of 100 nm in the TM polarized mode where we found them to be 100 nm and 40 degrees, per index refraction unit, respectively.

Edward SADER, Abdallah SAYYED-AHMAD. Design of an Optical Water Pollution Sensor Using a Single-Layer Guided-Mode Resonance Filter[J]. Photonic Sensors, 2013, 3(3): 224.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!