首页 > 论文 > 中国激光 > 41卷 > 1期(pp:105005--1)

强光致光纤布拉格光栅光谱特性变化机理

Mechanism of Fiber Bragg Grating Spectral Characteristics Change Induced by Intense Light

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

强光致光纤布拉格光栅(FBG)光谱的变化是由非线性效应和光热效应共同作用的结果。基于FBG传感模型,利用非线性薛定谔方程和一维稳态热传导方程分析了非线性效应和光热效应各自对于光谱变化的贡献比例。通过分析波长漂移量与相位改变的关系,建立了基于FBG的非线性折射率系数计算模型;通过理论仿真光纤内温度分布情况,分析了光热效应对光谱啁啾化和波长漂移量的影响。理论与实验研究结果表明,对于普通单模光纤,当注入抽运光功率较小时,FBG光谱的变化主要是由光热效应造成的,而非线性效应则贡献较小。

Abstract

The change of the fiber Bragg grating (FBG) spectrum induced by intense light is caused by the nonlinear effect together with the photo-thermal effect. Based on the sensing model of FBG, the contribution of nonlinear effect and the photo-thermal effect on the FBG spectrum change is analyzed by using the nonlinear refractive index coefficient and one-dimensional steady state heat equation. By analyzing the relationship between the wavelength shift and phase change, nonlinear refractive index coefficient calculation model is built. And the photo-thermal effect on the spectrum chirp and wavelength shift is confirmed by theoretical simulation of temperature distribution. As the theoretical and experimental results show, for conventional single mode fiber, FBG spectrum change is mainly caused by the photo-thermal effect rather than the nonlinear effect when a relatively lower power pump is injected to single mode optical fiber.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TN249

DOI:10.3788/cjl201441.0105005

所属栏目:光通信

基金项目:国家自然科学基金(61107076,61177088,61227012)、上海市重点学科建设资助项目(S30108)

收稿日期:2013-06-27

修改稿日期:2013-08-29

网络出版日期:--

作者单位    点击查看

李晓丽:上海大学上海市特种光纤与光接入网重点实验室, 通信与信息工程学院, 上海 200072
陈娜:上海大学上海市特种光纤与光接入网重点实验室, 通信与信息工程学院, 上海 200072
陈振宜:上海大学上海市特种光纤与光接入网重点实验室, 通信与信息工程学院, 上海 200072
王廷云:上海大学上海市特种光纤与光接入网重点实验室, 通信与信息工程学院, 上海 200072

联系人作者:李晓丽(lixiaoli623356@163.com)

备注:李晓丽(1989—),女,硕士研究生,主要从事光纤传感方面的研究。

【1】Paola Saccomandi, Emiliano Schena, Michele Arturo Caponero, et al.. Theoretical analysis and experimental evaluation of laser-induced interstitial thermotherapy in ex vivo porcine pancreas[J]. Transactions on Biomedical Engineering, 2012, 59(10): 2958-2964.

【2】Tae-Young Kim, Masanori Hanawa, Sun-Jong Kim, et al.. Optical delay interferometer based on phase shifted fiber Bragg grating with optically controllable phase shifter[J]. Opt Express, 2006, 14(10): 4250-4255.

【3】Zhang Xiaoli, Liang Dakai, Lu Jiyun, et al.. A high reliable optic fiber Bragg grating sensor network design[J]. Chinese J Lasers, 2011, 38(1): 0105004.
张晓丽, 梁大开, 芦吉云, 等. 高可靠光纤布拉格光栅传感器网络设计[J]. 中国激光, 2011, 38(1): 0105004.

【4】Dong Xinyong, Kong Lingjun, Zhao Chunliu, et al.. Multifunctional devices based on fiber Bragg grating Fabry-Perot structures[J]. Laser & Optoelectronics Progress, 2011, 48(12): 120604.
董新永, 孔令浚, 赵春柳, 等. 基于法布里珀罗结构的光纤光栅功能型器件[J]. 激光与光电子学进展, 2011, 48(12): 120604.

【5】Liu Wei, Chen Tao, Dai Jianning, et al.. All-fiberized Yb fiber laser with passively generated sub-nanosecond pulse output[J]. Acta Optica Sinica, 2011, 31(12): 1214003.
刘伟, 陈滔, 戴建宁, 等. 全光纤化的被动式亚纳秒脉冲Yb光纤激光器研究[J]. 光学学报, 2011, 31(12): 1214003.

【6】Irina V Kabakova, Therese Walsh, C M de Sterke, et al.. Performance of field-enhanced optical switching in fiber Bragg gratings[J]. J Opt Soc Am B, 2010, 27(7): 1343-1351.

【7】V V Gainov, O A Ryabushkin. Effect of optical pumping on the refractive index and temperature in the core of active fiber[J]. IEEE J Quantum Electron, 2011, 41(9): 809-814.

【8】Mohammad Karimi, Majid Lafouti, Ali Asghar Amidiyan, et al.. All-optical flip-flop based on nonlinear effects in fiber Bragg gratings[J]. Appl Opt, 2012, 51(1): 21-26.

【9】Andrea Melloni, Marco Chinello, Mario Martinelli. All-optical switching in phase-shifted fiber Bragg grating[J]. IEEE Photon Technol Lett, 2000, 12(1): 42-44.

【10】David C Brown. Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers[J]. IEEE J Quantum Electron, 2001, 37(2): 207-217.

【11】Yang Jingwei, Wang Li, Wu Xianyou, et al.. Numerical simulation and exerimental study on thermal effects of 2.94 μm ErYAG laser[J]. Acta Optica Sinica, 2012, 32(6): 0614002.
杨经纬, 王礼, 吴先友, 等. 2.94 μm ErYAG激光热效应数值模拟及实验研究[J]. 光学学报, 2012, 32(6): 0614002.

【12】Guo Bingxia, Li Qianghua. Influence of grating parameters on polarization properties of linearly chirped fiber Bragg gratings[J]. Chinese J Lasers, 2012, 39(s1): s105004.
郭炳霞, 励强华. 光栅参数对线性啁啾光纤光栅偏振特性的影响[J]. 中国激光, 2012, 39(s1): s105004.

【13】Benjamin J Eggleton, C Martijn de Sterke, R E Slusher. Nonlinear pulse propagation in Bragg gratings[J]. J Opt Soc Am B, 1997, 14(11): 2980-2993.

【14】Yu O Barmenkov, A V Kir′yanov, M V Andrés. Resonant and thermal changes of refractive index in a heavily doped erbium fiber pumped at wavelength 980 nm[J]. Appl Phys Lett, 2004, 85(13): 2466-2468.

【15】Guo Tuan, Liu Bo, Zhang Weigang, et al.. Research on optical fiber grating chirp-sensing technology[J]. Acta Optica Sinica, 2008, 28(5): 828-834.
郭团, 刘波, 张伟刚, 等. 光纤光栅啁啾化传感研究[J]. 光学学报, 2008, 28(5): 828-834.

【16】Jens Thomas, Christian Voigtlander, Ria G Becker, et al.. Femtosecond pulse written fiber gratings: a new avenue to integrated fiber technology[J]. Laser Photon Rev, 2012, 6(6): 609-723.

【17】Y H Kim, B H Lee, Y Chung, et al.. Resonant optical nonlinearity measurement of Yb3+/Al3+ codoped optical fibers by use of a long-period fiber grating pair[J]. Opt Lett, 2002, 27(8): 580-582.

引用该论文

Li Xiaoli,Chen Na,Chen Zhenyi,Wang Tingyun. Mechanism of Fiber Bragg Grating Spectral Characteristics Change Induced by Intense Light[J]. Chinese Journal of Lasers, 2014, 41(1): 0105005

李晓丽,陈娜,陈振宜,王廷云. 强光致光纤布拉格光栅光谱特性变化机理[J]. 中国激光, 2014, 41(1): 0105005

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF