首页 > 论文 > 中国光学 > 6卷 > 6期(pp:876-884)

非局部变分修复法去除高密度椒盐噪声

Elimination of impulse noise by non-local variation inpainting method

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

分析了中值滤波及其改进型算法在处理高密度椒盐噪声时效果不理想的原因, 采用变分修复方法来去除高密度椒盐噪声, 基于现有的全变差修复模型提出了非局部全变差修复模型。 该模型利用椒盐噪声特点(均匀分布、灰度值为0或255), 将噪声点看成是图像中遗失或是破损的点, 首先在图像中寻找与噪声点邻域相似的区域, 将相似区域的中心像素作为噪声点新的邻域然后对其插值, 把图像降噪问题转化为图像修复问题, 从而达到去除高密度噪声的目的。实验结果表明: 该模型对噪声密度为90%的彩色和灰度图像去噪后, 其峰值信噪比为2285和2877, 在客观评价标准方面优于中值滤波及其改进型算法。该模型能有效去除高密度下的椒盐噪声并较好地恢复图像细节, 为图像去除高密度噪声提供了一种新的途径。

Abstract

The reasons of ineffectiveness of median filtering and its improved algorithm for eliminating the high-density salt-and-pepper noise are analyzed. A variational inpainting method is adopted to remove the high-density salt-and-pepper noise, and a inpainting model of Non-local Total Variation(NL-TV) based on the existing model of Total Variation(TV) is proposed in this article. In the NL-TV model based on the characteristics of salt-and-pepper noise(uniform distribution and the gray value of 0 or 255), we view the noise points as the lost or damaged points of an image to find the districts similar to the neighborhoods of noise points in an image, and then interpolate the noise points by taking the central pixel in a similar district as a new neighborhood of noise points. By this method, we transform the problem of image denoising into a problem of image restoration to remove the high-density noise. The experimental results show that the Peak Signal to Noise Ratios(PSNRs) are 2285 and 2877 after removing the noise for a color and gray-scale image with 90% of noise density, which is better than the results obtained by median filter and its improved algorithm in terms of the objective evaluation criteria. Using this model, we can effectively remove the high-density salt-and-pepper noise and restore the image details better, which provides a new approach to remove the high-density noise.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TP391.4

DOI:10.3788/co.20130606.0876

所属栏目:信息光学

基金项目:中国科学院航空光学成像与测量重点实验室开放基金资助项目(No.2012MS01)

收稿日期:2013-09-12

修改稿日期:2013-10-15

网络出版日期:--

作者单位    点击查看

杨文波:中国科学院 长春光学精密机械与物理研究所航空光学成像与测量中国科学院重点实验室, 吉林 长春 130033中国科学院大学, 北京 100049
马天玮:中国科学院 长春光学精密机械与物理研究所航空光学成像与测量中国科学院重点实验室, 吉林 长春 130033
刘剑:中国科学院 长春光学精密机械与物理研究所航空光学成像与测量中国科学院重点实验室, 吉林 长春 130033

联系人作者:杨文波(ywbcust@sina.com)

备注:杨文波(1980—), 男, 吉林省吉林市人, 博士研究生, 2010年于长春理工大学获得硕士学位, 主要从事超分辨率重构、图像复原方面的研究。

【1】ZHANG X,XIONG Y. Impulse noisere moval using directional difference based noise detector and adaptive weighted mean filter[J]. IEEE Signal Processing Lett.,2009,16(4): 295-298.

【2】IBRAHIM H,KONG N. Simple adaptive median filter for the removal of impulse noise from highly corrupted images[J]. IEEE Trans. Consumer Electronics,2008,54(4): 1920-1927.

【3】AKKOUL S,LECONGE R,HARBA R. A new adaptive switching median filter[J]. Signal Proc. Lett.,2010: 587-590.

【4】CHAN R H,HO C W,NIKOLOVA M. Salt-and-pepper noise removal by median-type noise detectors and detail-preserving regularization[J]. IEEE Trans. Image Process,2005,14(10): 1479-1485.

【5】SRINIVASAN K S,EBENEZER D. A new fast and efficient decision-based algorithm for removal of high-density impulse noises[J]. IEEE Signal Proc. Lett.,2007,14(3): 189-192.

【6】王明佳,张旭光,韩广良,等.自适应权值滤波消除图像椒盐噪声的方法[J].光学 精密工程,2007,15(5): 779-783.
WANG M J,ZHANG X G,HAN G L,et al.. Elimination of impulse noise by auto-adapted weight filter[J]. Opt. Precision Eng.,2007,15(5): 779-783.(in Chinese)

【7】TOH K K V,ISA N A M. Noise adaptive fuzzy switching median filter for salt-and-pepper noise reduction[J]. IEEE Signal Proc. Lett.,2010,17(3): 281-284.

【8】VIJAYKUMAR V R,VANATHI P T,EBENEZER D. High density impulse noise removal using robust estimation based filter[J]. IAENG International J. Computer Science,2008,35(3): 140-148.

【9】CHAN T F,SHEN J H.图像处理与分析-变分, PDE, 小波及随机方法[M].陈文斌、程晋译.北京: 科学出版社, 2011.
CHAN T F,SHEN J H. Image Processing and Analysis: Variational, PDE, Wavelet, and Stochastic Methods[M]. CHEN W B,CHENG J translate. Beijing: Science Press,2011.(in Chinese)

【10】CHAN T F,SHEN J H. Nontexture inpainting by curvature driven diffusions(CDD)[J]. Visual Comm.Image Rep.,2001,12: 436-449.

【11】GILBOA G,OSHER S. Nonlocal operators with applications to image processing[J]. SIAM Multiscale Modeling and Simulation,2008,7(3): 1005-1028.

【12】BUADES A,COLL B,MOREL J M. On image denoising methods[J]. SIAM Multiscale Modeling and Simulation,2005,4(2): 490-530.

【13】BUADES A,COLL B,MOREL J M. Neighborhood filters and PDE′s[J]. Numerische Mathematik,2006,105(10): 1-34.

引用该论文

YANG Wen-bo,MA Tian-wei,LIU Jian. Elimination of impulse noise by non-local variation inpainting method[J]. Chinese Optics, 2013, 6(6): 876-884

杨文波,马天玮,刘剑. 非局部变分修复法去除高密度椒盐噪声[J]. 中国光学, 2013, 6(6): 876-884

被引情况

【1】李琦,胡佳琦,杨永发. 太赫兹Gabor同轴数字全息二维再现像复原. 光学 精密工程, 2014, 22(8): 2188-2195

【2】许廷发,苏畅,罗璇,卞紫阳. 基于梯度和小波变换的水下距离选通图像去噪. 中国光学, 2016, 9(3): 301-310

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF