首页 > 论文 > 光学学报 > 41卷 > 1期(pp:0131001--1)

极紫外、X射线和中子薄膜光学元件与系统

Extreme Ultraviolet, X-Ray and Neutron Thin Film Optical Components and Systems

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

极紫外、X射线和中子光学为现代科学的发展提供了高精度的观测手段,但这些手段的实现需要大量高性能薄膜光学元件和系统的支撑。由于短波长和材料光学常数的限制,短波光学元件的结构、性能和制作技术明显区别于长波光学元件。近二十年来,同济大学精密光学工程技术研究所建立了以短波反射镜为基底的精密加工检测平台,发展了超薄薄膜界面生长调控方法和大尺寸薄膜镀制技术,提出了高效率/高分辨率多层膜微纳结构的衍射理论和制备方法,初步阐明了短波辐照损伤的物理机制,形成了短波薄膜和晶体聚焦成像系统的高精度全流程研制技术,并将该技术成功应用于国内和国际短波光子大科学装置中。本文简要介绍本课题组在上述短波元件和系统领域中的研究进展。

Abstract

Extreme ultraviolet, X-ray and neutron optics are the high-precision observation methods for the development of modern science, which requires the support of different thin film optical components and systems with high quality. Due to the limitation of the short wavelength and optical constants of materials, the structure, optical performance and fabrication techniques of the short wavelength optical components are significantly different with those of the long wavelength optical components. The Institute of Precision Optical Engineering (IPOE) in Tongji University had 20 years research experience in this field. We have built a high-accuracy fabrication and detection platform based on the short wavelength mirrors, developed interface engineering methods for deposition of ultrathin multilayer film, extended the coated technology of large size mirrors, innovated the diffraction theory and fabrication process for high-efficiency/high-resolution multilayer nanostructures, preliminarily studied the basic damage mechanism of the mirrors under short wavelength irradiation, and formed a complete technology chain to develop thin films and crystal based optical systems. These optical components and systems have achieved a series of successful application in the short wavelength photon/neutron science facilities, both in China and in other countries. This paper will briefly introduce the recent research progress of the above mentioned optical components and systems in IPOE.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:O434

DOI:10.3788/AOS202141.0131001

所属栏目:薄膜

基金项目:国家自然科学基金、国家重点研发计划、上海市青年科技启明星计划、上海市市级科技重大专项资助课题、上海市科委科技基金项目(17JC1400800)

收稿日期:2020-12-13

修改稿日期:2020-12-23

网络出版日期:2021-01-01

作者单位    点击查看

王占山:同济大学物理科学与工程学院先进微结构材料教育部重点实验室, 精密光学工程技术研究所, 上海 200092
黄秋实:同济大学物理科学与工程学院先进微结构材料教育部重点实验室, 精密光学工程技术研究所, 上海 200092
张众:同济大学物理科学与工程学院先进微结构材料教育部重点实验室, 精密光学工程技术研究所, 上海 200092
伊圣振:同济大学物理科学与工程学院先进微结构材料教育部重点实验室, 精密光学工程技术研究所, 上海 200092
李文斌:同济大学物理科学与工程学院先进微结构材料教育部重点实验室, 精密光学工程技术研究所, 上海 200092
沈正祥:同济大学物理科学与工程学院先进微结构材料教育部重点实验室, 精密光学工程技术研究所, 上海 200092
齐润泽:同济大学物理科学与工程学院先进微结构材料教育部重点实验室, 精密光学工程技术研究所, 上海 200092
余俊:同济大学物理科学与工程学院先进微结构材料教育部重点实验室, 精密光学工程技术研究所, 上海 200092

联系人作者:王占山(wangzs@tongji.edu.cn)

【1】Attwood D, Sakdinawat A. X-rays and extreme ultraviolet radiation[M]. Cambridge: , 2016.

【2】Sakdinawat A, Attwood D. Nanoscale X-ray imaging [J]. Nature Photonics. 2010, 4(12): 840-848.

【3】Bajt S, Prasciolu M, Fleckenstein H, et al. X-ray focusing with efficient high-NA multilayer Laue lenses [J]. Light: Science & Applications. 2018, 7: 17162.

【4】Hardacre C, Beale A M, Gibson E K, et al. Synchrotron radiation and catalytic science [J]. Synchrotron Radiation News. 2020, 33(1): 10-14.

【5】Tao Z S, Chen C, Szilvási T, et al. Direct time-domain observation of attosecond final-state lifetimes in photoemission from solids [J]. Science. 2016, 353(6294): 62-67.

【6】Yabashi M, Tono K, Mimura H, et al. Optics for coherent X-ray applications [J]. Journal of Synchrotron Radiation. 2014, 21: 976-985.Yabashi M, Tono K, Mimura H, et al. Optics for coherent X-ray applications [J]. Journal of Synchrotron Radiation. 2014, 21: 976-985.

【7】Wischmeier L, Graeupner P, Kuerz P, et al. High-NA EUV lithography optics becomes reality [J]. Proceedings of SPIE. 2020, 11323: 1132308.Wischmeier L, Graeupner P, Kuerz P, et al. High-NA EUV lithography optics becomes reality [J]. Proceedings of SPIE. 2020, 11323: 1132308.

【8】Cocco D, Spiga D. Wavefront preserving optics for diffraction-limited storage rings and free-electron lasers [J]. Proceedings of SPIE. 2019, 11111: 111110G.Cocco D, Spiga D. Wavefront preserving optics for diffraction-limited storage rings and free-electron lasers [J]. Proceedings of SPIE. 2019, 11111: 111110G.

【9】Yamauchi K, Mimura H, Inagaki K, et al. Figuring with subnanometer-level accuracy by numerically controlled elastic emission machining [J]. Review of Scientific Instruments. 2002, 73(11): 4028-4033.Yamauchi K, Mimura H, Inagaki K, et al. Figuring with subnanometer-level accuracy by numerically controlled elastic emission machining [J]. Review of Scientific Instruments. 2002, 73(11): 4028-4033.

【10】Weiser M. Ion beam figuring for lithography optics [J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2009, 267(8/9): 1390-1393.Weiser M. Ion beam figuring for lithography optics [J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2009, 267(8/9): 1390-1393.

【11】Matsuyama S, Inoue T, Yamada J, et al. Nanofocusing of X-ray free-electron laser using wavefront-corrected multilayer focusing mirrors [J]. Scientific Reports. 2018, 8(1): 17440.Matsuyama S, Inoue T, Yamada J, et al. Nanofocusing of X-ray free-electron laser using wavefront-corrected multilayer focusing mirrors [J]. Scientific Reports. 2018, 8(1): 17440.

【12】Martin I F, Vannoni M, Sinn H. Metrology and quality assurance for European XFEL long flat mirrors installation [J]. Proceedings of SPIE. 2017, 10330: 1033007.Martin I F, Vannoni M, Sinn H. Metrology and quality assurance for European XFEL long flat mirrors installation [J]. Proceedings of SPIE. 2017, 10330: 1033007.

【13】Chian L, Lahsen A, Conley R, et al. Profile coating and its application for Kirkpatrick--Baez mirrors [J]. Optical Engineering. 2003, 42(12): 3622-3628.Chian L, Lahsen A, Conley R, et al. Profile coating and its application for Kirkpatrick--Baez mirrors [J]. Optical Engineering. 2003, 42(12): 3622-3628.

【14】Shi Y N, Huang Q S, Qi R Z, et al. Theoretical and experimental study of particle distribution from magnetron sputtering with masks for accurate thickness profile control [J]. Coatings. 2020, 10(4): 357.Shi Y N, Huang Q S, Qi R Z, et al. Theoretical and experimental study of particle distribution from magnetron sputtering with masks for accurate thickness profile control [J]. Coatings. 2020, 10(4): 357.

【15】Barty A, Soufli R. McCarville T, et al. Predicting the coherent X-ray wavefront focal properties at the Linac Coherent Light Source (LCLS) X-ray free electron laser [J]. Optics Express. 2009, 17(18): 15508-15519.

【16】Yingna S, Runze Q, Yufei F, et al. Microstructure, roughness, and stress properties of silicon coatings for shape correction of Kirkpatrick--Baez mirrors [J]. Optical Engineering. 2019, 58(1): 015103.Yingna S, Runze Q, Yufei F, et al. Microstructure, roughness, and stress properties of silicon coatings for shape correction of Kirkpatrick--Baez mirrors [J]. Optical Engineering. 2019, 58(1): 015103.

【17】Xudong X, Zhengxiang S, Guangde T, et al. Sparse subaperture stitching method for measuring large aperture planar optics [J]. Optical Engineering. 2016, 55(2): 024103.Xudong X, Zhengxiang S, Guangde T, et al. Sparse subaperture stitching method for measuring large aperture planar optics [J]. Optical Engineering. 2016, 55(2): 024103.

【18】Xu X D, Huang Q S, Huang Q S, et al. Accuracy analysis and improvement of an algorithm-based stitching interferometry method for curved mirrors with large radii of curvature [J]. OSA Continuum. 2019, 2(10): 2783-2794.Xu X D, Huang Q S, Huang Q S, et al. Accuracy analysis and improvement of an algorithm-based stitching interferometry method for curved mirrors with large radii of curvature [J]. OSA Continuum. 2019, 2(10): 2783-2794.

【19】Chen J Q, Huang Q S, Qi R Z, et al. Effects of sputtering power and annealing temperature on surface roughness of gold films for high-reflectivity synchrotron radiation mirrors [J]. Nuclear Science and Techniques. 2019, 30(7): 1-6.

【20】Qi R Z, Pan L Y, Feng Y F, et al. Evolution of chemical, structural, and mechanical properties of titanium nitride thin films deposited under different nitrogen partial pressure [J]. Results in Physics. 2020, 19: 103416.Qi R Z, Pan L Y, Feng Y F, et al. Evolution of chemical, structural, and mechanical properties of titanium nitride thin films deposited under different nitrogen partial pressure [J]. Results in Physics. 2020, 19: 103416.

【21】Wu J L, Qi R Z, Huang Q S, et al. Stress, roughness and reflectivity properties of sputter-deposited B4C coatings for X-ray mirrors Chinese Physics Letters[J]. 0, 2019(12): 120701.

【22】Yang Y, Qiushi H, Igor V K, et al. Comparative study of single-layer, bilayer, and trilayer mirrors with enhanced X-ray reflectance in 0.5- to 8-keV energy region [J]. Journal of Astronomical Telescopes Instruments and Systems. 2020, 6(4): 044001.Yang Y, Qiushi H, Igor V K, et al. Comparative study of single-layer, bilayer, and trilayer mirrors with enhanced X-ray reflectance in 0.5- to 8-keV energy region [J]. Journal of Astronomical Telescopes Instruments and Systems. 2020, 6(4): 044001.

【23】Bajt S, Stearns D G, Kearney P A. Investigation of the amorphous-to-crystalline transition in Mo/Si multilayers [J]. Journal of Applied Physics. 2001, 90(2): 1017-1025.Bajt S, Stearns D G, Kearney P A. Investigation of the amorphous-to-crystalline transition in Mo/Si multilayers [J]. Journal of Applied Physics. 2001, 90(2): 1017-1025.

【24】Kuznetsov D, Yakshin A, Sturm M, et al. High-reflectance La/B-based multilayer mirror for 6.x-nm wavelength [J]. Proceedings of SPIE. 2015, 9588: 958806.

【25】Ghafoor N, Eriksson F, Aquila A, et al. Impact of B4C co-sputtering on structure and optical performance of Cr/Sc multilayer X-ray mirrors [J]. Optics Express. 2017, 25(15): 18274-18287.

【26】Huang Q S, Fei J N, Liu Y, et al. High reflectance Cr/V multilayer with B4C barrier layer for water window wavelength region [J]. Optics Letters. 2016, 41(4): 701-704.Huang Q S, Fei J N, Liu Y, et al. High reflectance Cr/V multilayer with B4C barrier layer for water window wavelength region [J]. Optics Letters. 2016, 41(4): 701-704.

【27】Huang Q, Yi Q, Cao Z, et al. High reflectance nanoscale V/Sc multilayer for soft X-ray water window region [J]. Scientific Reports. 2017, 7(1): 12929.

【28】Xu D C, Huang Q S, Wang Y W, et al. Enhancement of soft X-ray reflectivity and interface stability in nitridated Pd/Y multilayer mirrors [J]. Optics Express. 2015, 23(26): 33018-33026.

【29】Ni H J, Huang Q S, Liu G C, et al. Comparative study of Pd/B4C X-ray multilayer mirrors fabricated by magnetron sputtering with Kr and Ar gas [J]. Materials. 2020, 13(20): 4504.Ni H J, Huang Q S, Liu G C, et al. Comparative study of Pd/B4C X-ray multilayer mirrors fabricated by magnetron sputtering with Kr and Ar gas [J]. Materials. 2020, 13(20): 4504.

【30】Feigl T, Perske M, Pauer H, et al. Optical performance of LPP multilayer collector mirrors [J]. Proceedings of SPIE. 2012, 8322: 832217.

【31】Wang Z S, Zhu J T, Mu B Z, et al. Applications of multilayer optics [J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2010, 623(2): 786-790.

【32】Zhang Z, Qi R Z, Yao Y Y, et al. Improving thickness uniformity of Mo/Si multilayers on curved spherical substrates by a masking technique [J]. Coatings. 2019, 9(12): 851.Zhang Z, Qi R Z, Yao Y Y, et al. Improving thickness uniformity of Mo/Si multilayers on curved spherical substrates by a masking technique [J]. Coatings. 2019, 9(12): 851.

【33】St?rmer M, Siewert F, Horstmann C, et al. Coatings for FEL optics: preparation and characterization of B4C and Pt [J]. Journal of Synchrotron Radiation. 2018, 25: 116-122.St?rmer M, Siewert F, Horstmann C, et al. Coatings for FEL optics: preparation and characterization of B4C and Pt [J]. Journal of Synchrotron Radiation. 2018, 25: 116-122.

【34】Wang C Q, Wang Z S, Zhang Z, et al. Calculation and verification of linear target deposition distribution [J]. Proceedings of SPIE. 2020, 11617: 116171M.Wang C Q, Wang Z S, Zhang Z, et al. Calculation and verification of linear target deposition distribution [J]. Proceedings of SPIE. 2020, 11617: 116171M.

【35】Ni H J, Huang Q S, Shi Y N, et al. Development of large-size multilayer mirrors with a linear deposition facility for X-ray applications [J]. Optical Engineering. 2019, 58(10): 104105.Ni H J, Huang Q S, Shi Y N, et al. Development of large-size multilayer mirrors with a linear deposition facility for X-ray applications [J]. Optical Engineering. 2019, 58(10): 104105.

【36】Tu Y C, Song Z Q, Huang Q S, et al. Fabrication of laterally graded periodic Mo/Si multilayer using magnetron sputtering technology [J]. High Power Laser and Particle Beams. 2011, 23(9): 2419-2422.
涂昱淳, 宋竹青, 黄秋实, 等. 磁控溅射制备横向梯度分布的Mo/Si周期多层膜 [J]. 强激光与粒子束. 2011, 23(9): 2419-2422.

【37】Huang Q S. Medvedev V, van de Kruijs R, et al. Spectral tailoring of nanoscale EUV and soft X-ray multilayer optics [J]. Applied Physics Reviews. 2017, 4(1): 011104.

【38】Yakshin A E, Kozhevnikov I V, Zoethout E, et al. Properties of broadband depth-graded multilayer mirrors for EUV optical systems [J]. Optics Express. 2010, 18(7): 6957-6971.

【39】Kozhevnikov I V, Bukreeva I N, Ziegler E. Design of X-ray supermirrors [J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2001, 460(2/3): 424-443.Kozhevnikov I V, Bukreeva I N, Ziegler E. Design of X-ray supermirrors [J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2001, 460(2/3): 424-443.

【40】Wang Z S, Michette A G. Optimization of depth-graded multilayer designs for EUV and X-ray optics [J]. Proceedings of SPIE. 2001, 4145: 243-253.Wang Z S, Michette A G. Optimization of depth-graded multilayer designs for EUV and X-ray optics [J]. Proceedings of SPIE. 2001, 4145: 243-253.

【41】Wang Y W, Huang Q S, Yi Q, et al. Design of Pd/B4C aperiodic multilayers for 8-12 nm region with flat reflectivity profile [J]. Chinese Optics Letters. 2016, 14(7): 073101.

【42】Wang Z S, Wang H C, Zhu J T, et al. Extreme ultraviolet broadband Mo∕Y multilayer analyzers [J]. Applied Physics Letters. 2006, 89(24): 241120.Wang Z S, Wang H C, Zhu J T, et al. Extreme ultraviolet broadband Mo∕Y multilayer analyzers [J]. Applied Physics Letters. 2006, 89(24): 241120.

【43】Erko A, Idir M, Krist T, et al. Modern developments in X-ray and neutron optics [M]. Berlin, Heidelberg: Springer Berlin Heidelberg. 2008.

【44】Senthil Kumar M, B?ni P, electrical resistance. stress, embrittlement in reactively sputtered Ni/Ti multilayers, supermirrors. Physica B: Condensed Matter[J]. 2006, 385/386: 1265-1267.

【45】Maruyama R, Yamazaki D, Ebisawa T, et al. Development of high-reflectivity neutron supermirrors using an ion beam sputtering technique [J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2009, 600(1): 68-70.Maruyama R, Yamazaki D, Ebisawa T, et al. Development of high-reflectivity neutron supermirrors using an ion beam sputtering technique [J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2009, 600(1): 68-70.

【46】Jiao H F, Yu C Y, Zhang Z, et al. Effect of carbon on microstructure and interfaces of NiC/Ti multilayers for neutron applications [J]. Vacuum. 2018, 155: 49-54.

【47】Guggenmos A, Cui Y, Heinrich S, et al. Attosecond pulse shaping by multilayer mirrors [J]. Applied Sciences. 2018, 8(12): 2503.

【48】Bourassin-Bouchet C, de Rossi S, Wang J, et al. Shaping of single-cycle sub-50-attosecond pulses with multilayer mirrors [J]. New Journal of Physics. 2012, 14(2): 023040.

【49】Chen R, Wang F L, Wang A Z. Design of chirped Mo/Si multilayer mirror in the extreme ultraviolet region [J]. Chinese Optics Letters. 2008, 6(4): 310-312.

【50】Yang X W, Kozhevnikov I V, Huang Q S, et al. Unified analytical theory of single-order soft X-ray multilayer gratings [J]. Journal of the Optical Society of America B. 2015, 32(4): 506-522.

【51】Yang X W, Kozhevnikov I V, Huang Q S, et al. Analytic theory of alternate multilayer gratings operating in single-order regime [J]. Optics Express. 2017, 25(14): 15987-16001.

【52】Huang Q S, Kozhevnikov I V, Sokolov A, et al. Theoretical analysis and optimization of highly efficient multilayer-coated blazed gratings with high fix-focus constant for the tender X-ray region [J]. Optics Express. 2020, 28(2): 821-845.Huang Q S, Kozhevnikov I V, Sokolov A, et al. Theoretical analysis and optimization of highly efficient multilayer-coated blazed gratings with high fix-focus constant for the tender X-ray region [J]. Optics Express. 2020, 28(2): 821-845.

【53】Yang X, Wang H, Hand M, et al. Design of a multilayer-based collimated plane-grating monochromator for tender X-ray range [J]. Journal of Synchrotron Radiation. 2017, 24: 168-174.Yang X, Wang H, Hand M, et al. Design of a multilayer-based collimated plane-grating monochromator for tender X-ray range [J]. Journal of Synchrotron Radiation. 2017, 24: 168-174.

【54】Sokolov A, Huang Q S, Senf F, et al. Optimized highly efficient multilayer-coated blazed gratings for the tender X-ray region [J]. Optics Express. 2019, 27(12): 16833-16846.Sokolov A, Huang Q S, Senf F, et al. Optimized highly efficient multilayer-coated blazed gratings for the tender X-ray region [J]. Optics Express. 2019, 27(12): 16833-16846.

【55】Huang Q, Jia Q, Feng J, et al. Realization of wafer-scale nanogratings with sub-50 nm period through vacancy epitaxy [J]. Nature Communications. 2019, 10(1): 2437.Huang Q, Jia Q, Feng J, et al. Realization of wafer-scale nanogratings with sub-50 nm period through vacancy epitaxy [J]. Nature Communications. 2019, 10(1): 2437.

【56】André J M, Benbalagh R, Barchewitz R, et al. X-ray multilayer monochromator with enhanced performance [J]. Applied Optics. 2002, 41(1): 239-244.

【57】Kozhevnikov I V, van der Meer R, Bastiaens H M J, et al. Analytic theory of soft X-ray diffraction by lamellar multilayer gratings [J]. Optics Express. 2011, 19(10): 9172-9184.

【58】van der Meer R, Kozhevnikov I, Krishnan B, et al. Single-order operation of lamellar multilayer gratings in the soft X-ray spectral range [J]. AIP Advances. 2013, 3(1): 012103.van der Meer R, Kozhevnikov I, Krishnan B, et al. Single-order operation of lamellar multilayer gratings in the soft X-ray spectral range [J]. AIP Advances. 2013, 3(1): 012103.

【59】Huang Q S, Feng J T, Li T Z, et al. Narrowband lamellar multilayer grating with low contrast MoSi2/Si materials for the soft X-ray region [J]. Journal of Physics D: Applied Physics. 2019, 52(19): 195303.Huang Q S, Feng J T, Li T Z, et al. Narrowband lamellar multilayer grating with low contrast MoSi2/Si materials for the soft X-ray region [J]. Journal of Physics D: Applied Physics. 2019, 52(19): 195303.

【60】Hau-Riege S P, London R A, Bionta R M, et al. Wavelength dependence of the damage threshold of inorganic materials under extreme-ultraviolet free-electron-laser irradiation [J]. Applied Physics Letters. 2009, 95(11): 111104.Hau-Riege S P, London R A, Bionta R M, et al. Wavelength dependence of the damage threshold of inorganic materials under extreme-ultraviolet free-electron-laser irradiation [J]. Applied Physics Letters. 2009, 95(11): 111104.

【61】Hau-Riege S P, London R A, Graf A, et al. Interaction of short X-ray pulses with low-Z X-ray optics materials at the LCLS free-electron laser [J]. Optics Express. 2010, 18(23): 23933-23938.

【62】Aquila A, Sobierajski R, Ozkan C, et al. Fluence thresholds for grazing incidence hard X-ray mirrors [J]. Applied Physics Letters. 2015, 106(24): 241905.Aquila A, Sobierajski R, Ozkan C, et al. Fluence thresholds for grazing incidence hard X-ray mirrors [J]. Applied Physics Letters. 2015, 106(24): 241905.

【63】Koyama T, Yumoto H, Miura T, et al. Damage threshold of coating materials on X-ray mirror for X-ray free electron laser [J]. The Review of Scientific Instruments. 2016, 87(5): 051801.

【64】Makhotkin I A, Sobierajski R, Chalupsky J, et al. Experimental study of EUV mirror radiation damage resistance under long-term free-electron laser exposures below the single-shot damage threshold [J]. Journal of Synchrotron Radiation. 2018, 25: 77-84.Makhotkin I A, Sobierajski R, Chalupsky J, et al. Experimental study of EUV mirror radiation damage resistance under long-term free-electron laser exposures below the single-shot damage threshold [J]. Journal of Synchrotron Radiation. 2018, 25: 77-84.

【65】Zhang Z, Li W B, Huang Q S, et al. A table-top EUV focusing optical system with high energy density using a modified Schwarzschild objective and a laser-plasma light source [J]. Review of Scientific Instruments. 2018, 89(10): 103109.

【66】Gaudin J, Peyrusse O, Chalupsky J, et al. Amorphous to crystalline phase transition in carbon induced by intense femtosecond X-ray free-electron laser pulses [J]. Physical Review B. 2012, 86(2): 024103.

【67】Milov I, Makhotkin I A, Sobierajski R, et al. Mechanism of single-shot damage of Ru thin films irradiated by femtosecond extreme UV free-electron laser [J]. Optics Express. 2018, 26(15): 19665-19685.

【68】Khorsand A R, Sobierajski R, Louis E, et al. Single shot damage mechanism of Mo/Si multilayer optics under intense pulsed XUV-exposure [J]. Optics Express. 2010, 18(2): 700-712.

【69】Li W, Zhang Z, Pan L, et al. Table-top focused EUV optical system with high energy density and its application on EUV damage tests [J]. Proceeding of SPIE. 2019, 11035: 1103535.Li W, Zhang Z, Pan L, et al. Table-top focused EUV optical system with high energy density and its application on EUV damage tests [J]. Proceeding of SPIE. 2019, 11035: 1103535.

【70】Wang X, Huang Y, Mu B Z, et al. 18.2 nm Schwarzschild microscope for diagnostics of hot electron transport [J]. Optik. 2012, 123(11): 947-949.Wang X, Huang Y, Mu B Z, et al. 18.2 nm Schwarzschild microscope for diagnostics of hot electron transport [J]. Optik. 2012, 123(11): 947-949.

【71】Chen S H, Wang X, Huang Q S, et al. 13.5 nm Schwarzschild microscope with high magnification and high resolution [J]. Chinese Optics Letters. 2017, 15(4): 043401.

【72】Marshall F J, Bahr R E, Goncharov V N, et al. A framed, 16-image Kirkpatrick--Baez X-ray microscope [J]. The Review of Scientific Instruments. 2017, 88(9): 093702.Marshall F J, Bahr R E, Goncharov V N, et al. A framed, 16-image Kirkpatrick--Baez X-ray microscope [J]. The Review of Scientific Instruments. 2017, 88(9): 093702.

【73】Pickworth L A, Ayers J, Bell P, et al. 87(11): 11E316 . 2016.

【74】Yi S Z, Zhang Z, Huang Q S, et al. Eight-channel Kirkpatrick--Baez microscope for multiframe X-ray imaging diagnostics in laser plasma experiments [J]. The Review of Scientific Instruments. 2016, 87(10): 103501.Yi S Z, Zhang Z, Huang Q S, et al. Eight-channel Kirkpatrick--Baez microscope for multiframe X-ray imaging diagnostics in laser plasma experiments [J]. The Review of Scientific Instruments. 2016, 87(10): 103501.

【75】Yi S Z, Zhang Z, Huang Q S, et al. Note: Tandem Kirkpatrick--Baez microscope with sixteen channels for high-resolution laser-plasma diagnostics [J]. The Review of Scientific Instruments. 2018, 89(3): 036105.Yi S Z, Zhang Z, Huang Q S, et al. Note: Tandem Kirkpatrick--Baez microscope with sixteen channels for high-resolution laser-plasma diagnostics [J]. The Review of Scientific Instruments. 2018, 89(3): 036105.

【76】Harrison F A, Craig W W, Christensen F E, et al. The nuclear spectroscopic telescope array (NuSTAR) high-energy X-ray mission [J]. The Astrophysical Journal. 2013, 770(2): 103.

【77】Basu-Zych A R, Hornschemeier A E, Haberl F, et al. The next-generation X-ray galaxy survey with eROSITA [J]. Monthly Notices of the Royal Astronomical Society. 2020, 498(2): 1651-1667.Basu-Zych A R, Hornschemeier A E, Haberl F, et al. The next-generation X-ray galaxy survey with eROSITA [J]. Monthly Notices of the Royal Astronomical Society. 2020, 498(2): 1651-1667.

【78】Cui W, Chen L B, Gao B, et al. HUBS: hot universe baryon surveyor [J]. Journal of Low Temperature Physics. 2020, 199(1/2): 502-509.

【79】Yu J, Shen Z X, Sheng P F, et al. Ray tracing method for the evaluation of grazing incidence X-ray telescopes described by spatially sampled surfaces [J]. Applied Optics. 2018, 57(7): B74-B82.Yu J, Shen Z X, Sheng P F, et al. Ray tracing method for the evaluation of grazing incidence X-ray telescopes described by spatially sampled surfaces [J]. Applied Optics. 2018, 57(7): B74-B82.

【80】Wang Z S, Liao Y Y, Shen Z X, et al. Development of imaging X-ray telescopes at Tongji University [J]. Journal of Astronomical Telescopes, Instruments, and Systems. 2019, 5(4): 044010.Wang Z S, Liao Y Y, Shen Z X, et al. Development of imaging X-ray telescopes at Tongji University [J]. Journal of Astronomical Telescopes, Instruments, and Systems. 2019, 5(4): 044010.

【81】Shen Z X, Yu J, Liao Y Y, et al. Development of X-ray focusing telescope by thin-glass slumping technology [J]. Proceedings of SPIE. 2020, 11548: 115480D.Shen Z X, Yu J, Liao Y Y, et al. Development of X-ray focusing telescope by thin-glass slumping technology [J]. Proceedings of SPIE. 2020, 11548: 115480D.

【82】Shen Z, Yu J, Ma B, et al. The research of nested grazing incidence X-ray telescope with high angular resolution [J]. Proceedings of SPIE. 2019, 11119: 111190X.Shen Z, Yu J, Ma B, et al. The research of nested grazing incidence X-ray telescope with high angular resolution [J]. Proceedings of SPIE. 2019, 11119: 111190X.

【83】Shen Z, Yu J, Liao Y, et al. Development of X-ray focusing telescope for HUBS [J]. Proceedings of SPIE. 2020, 11444: 114442T.Shen Z, Yu J, Liao Y, et al. Development of X-ray focusing telescope for HUBS [J]. Proceedings of SPIE. 2020, 11444: 114442T.

【84】Wu H R, Yang Y, Hussey D S, et al. Study of a nested neutron-focusing supermirror system for small-angle neutron scattering [J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2019, 940: 380-386.Wu H R, Yang Y, Hussey D S, et al. Study of a nested neutron-focusing supermirror system for small-angle neutron scattering [J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2019, 940: 380-386.

【85】Yang Y, Qi R Z, Zhang Z, et al. Ni-Ti supermirror coated onto a curved substrate for nested neutron-focusing optics [J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2021, 986: 164752.Yang Y, Qi R Z, Zhang Z, et al. Ni-Ti supermirror coated onto a curved substrate for nested neutron-focusing optics [J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2021, 986: 164752.

【86】Xing L, Liu P, Yang X W, et al. Ultrathin transmission-type bent crystals for XFEL spectral diagnostic [J]. Proceedings of SPIE. 2020, 11617: 116171Y.

引用该论文

Wang Zhanshan,Huang Qiushi,Zhang Zhong,Yi Shengzhen,Li Wenbin,Shen Zhengxiang,Qi Runze,Yu Jun. Extreme Ultraviolet, X-Ray and Neutron Thin Film Optical Components and Systems[J]. Acta Optica Sinica, 2021, 41(1): 0131001

王占山,黄秋实,张众,伊圣振,李文斌,沈正祥,齐润泽,余俊. 极紫外、X射线和中子薄膜光学元件与系统[J]. 光学学报, 2021, 41(1): 0131001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF