首页 > 论文 > 中国激光 > 48卷 > 2期(pp:202017--1)

飞秒激光组装一维纳米材料及其应用

Femtosecond Laser Assembly of One-Dimensional Nanomaterials and Their Application

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

一维纳米材料具有众多优异的特性,是构建微纳米功能性器件的基石。实现一维纳米材料在二维和三维空间的高精度和高定向组装是充分发挥其应用潜力的关键,同时也是制造难点。在众多纳米材料组装技术中,飞秒激光直写诱导组装技术具有独特优势,可实现一维纳米材料在任意三维结构中的可设计、高定向及高精度的组装。首先简要介绍了一维纳米材料组装研究的背景,并总结了非激光直写组装技术的研究现状和存在的挑战,然后较详细介绍了飞秒激光直写技术在一维纳米材料组装研究中的进展,重点回顾了金属(包括Au和Ag纳米线)、半导体(包括CNTs和ZnO)一维纳米材料的飞秒激光直写组装及微纳光电子功能器件的制造。并讨论了诱导一维纳米材料定向排布的光学力和非光学力(包括剪切力、体积收缩应力和空间限制)的作用机理,理论计算和实验研究结果验证了飞秒激光诱导的非光学力作用是导致一维纳米材料定向排布的主要原因。最后探讨了目前飞秒激光组装技术面临的一些问题和未来在高精度纳米材料组装和三维功能器件集成方面的发展趋势。

Abstract

Significance One-dimensional (1D) nanomaterials, such as nanowires (NWs), nanorods (NRs) and nanotubes (NTs), are the smallest units for achieving the efficient transportation of electrons and excitons, which are considered to be the ideal building blocks for constructing micro/nano functional devices. 1D nanomaterials have potential application prospects in nano-optoelectronics, nanosensing, energy storage, biomedicine, and other such fields because of their unique optical, electrical, magnetic, thermal, and mechanical characteristics as well as other excellent characteristics. Currently, the techniques used to synthesize the ordered 1D nanomaterials are quite mature. However, the efficient assembly of 1D nanomaterials remains a challenge that must be urgently solved. The gaps between 1D nanomaterials and integrated devices in various fields can be bridged by assembling 1D nanomaterials into two-dimensional (2D) or three-dimensional (3D) micro/nanoarchitectures. In addition, the properties of 1D nanomaterials must be completely utilized. Thus, to realize the high-precision and highly directional assembly of 1D nanomaterials in 2D/3D spaces is the key to explore their potential applications.

Various methods, such as the lithography and etching technologies, the methods in which external force or field approaches, the template-assisted methods, the biorecognition methods involving near-field manipulation, and the electro-hydrodynamic (EHD) printing method, are used for assembling 1D nanomaterials into 2D and 3D ordered mesoscale structures. Unfortunately, the inherent disadvantages associated with these methods considerably limit their wider applications. In case of the usage of the external force approach, it is difficult to precisely control the density and placement of NWs using the shear force-based approaches. The application of the magnetic field-based method is only restricted to the ferromagnetic and super-paramagnetic material-based NWs. In addition, the electric field-based method requires the highly unified process conditions and the preparation of electrodes in advance. Furthermore, the assembly of 1D nanomaterials in 3D space is still in the initial research stage. The traditional assembly methods such as the Langmuir-Blodgett (LB), contact printing, and EHD printing methods, can used to realize the deposition of 2D and 2.5D structures, such as arrays and mesh grids, by stacking 1D nanomaterials. However, it is still difficult to accurately control the vertical assembly of 1D nanomaterials using these traditional assembly methods. Therefore, the high precision, highly directional, and controllable assembly of 1D nanomaterials in 3D space requires a further investigation.

Recently, two-photon polymerization (TPP) laser direct writing has emerged as a promising technique for assembling nanomaterials owing to its real 3D nanofabrication capability and sub-diffraction-limited resolution. TPP fabrication can achieve designable, highly directional, and high-precision assembly of 1D nanomaterials in 3D space because of the laser-induced trapping force and micro/nanoscale laser writing resolution. Currently, some research groups have assembled 1D nanomaterials, including Au NRs, Ag NWs, CNTs, and ZnO NWs, via laser direct writing. However, some challenges remain with respect to the highly directional assembly, integration and application of the assembled nanomaterials and the LSPRs of metal nanomaterials. Hence, the existing research must be summarized for guiding the future development of this field in a rational manner.

Progress In this study, first, the background of 1D nanomaterial assembly techniques is introduced. In addition, the mechanism and state of the art of non-laser assembly techniques are summarized. Furthermore, the existing challenges associated with this field are discussed. Second, the recent progress of the laser assembly techniques of 1D nanomaterials is reviewed. Both 1D metallic and semiconducting nanomaterials, including Au NRs, Ag NWs, CNTs, and ZnO NWs, are reviewed and discussed. For assembling 1D metal nanomaterials, Do et al. have deposited an individual Au NW from an optical trap using two different laser wavelengths to avoid the influence of LSPRs ( Fig. 5). Liu et al. have fabricated 3D Ag NW-based micro/nanostructures via TPP fabrication followed by a femtosecond laser nanojoining process (Figs. 6 and 7). In case of 1D semiconductor nanomaterials, Xiong et al. have fabricated various MWNT-based microelectronic devices, including capacitors and resistors, via TPP laser direct writing (Figs. 9 and 10). Long et al. have achieved the highly directional assembly of ZnO NWs in 2D and 3D micro/nanostructures via laser direct writing and fabricated a ZnO-NW-based polarization-resolved photodetector (Figs. 12 and 13). Third, the factors that influence the directional assembly of 1D nanomaterials including the optical and non-optical forces are discussed. The laser-induced non-optical force is proven to be the dominant factor that causes the directional assembly of 1D nanomaterials through the theoretical calculations and experimental tests. Finally, the existing challenges and development trends associated with femtosecond laser assembly techniques are discussed.

Conclusion and Prospect Compared with the traditional non-laser assembly techniques, the laser assembly methods, especially the femtosecond laser direct writing technology, exhibit advantages on the assembly of 1D nanomaterials because of their high spatial resolution and true 3D micro-nano manufacturing capability. A femtosecond laser exhibits high peak power and short pulse duration, and thus the nanomaterials can be accurately controlled with respect to its energy and momentum. Although the femtosecond laser direct writing technology has made some progresses on the assembly of 1D nanomaterials, several problems remain to be resolved, including some irregularities observed in the assembled 1D nanomaterials, the LSPRs of metal nanomaterials, and the low efficiency of the laser assembly methods. Thus, the regularity, flexibility, and efficiency of the laser direct writing technology may be further improved by modifying the components of the 1D nanomaterial composite resin, introducing vectorial electromagnetic fields, or employing parallel laser direct writing manufacturing.

广告组1.1 - 空间光调制器+DMD
补充资料

中图分类号:TN24

DOI:10.3788/CJL202148.0202017

所属栏目:激光制造

基金项目:国家重点研发计划项目;国家自然科学基金委面上项目;中央高校基本科研业务费专项资金; 2017YFB1104300;61774067;2017KFXKJC001,2018KFYXKJC027;

收稿日期:2020-08-31

修改稿日期:2020-11-05

网络出版日期:2021-02-01

作者单位    点击查看

龙婧:华中科技大学光学与电子信息学院武汉光电国家研究中心, 湖北 武汉 430074
焦玢璋:华中科技大学光学与电子信息学院武汉光电国家研究中心, 湖北 武汉 430074
范旭浩:华中科技大学光学与电子信息学院武汉光电国家研究中心, 湖北 武汉 430074
刘耘呈:华中科技大学光学与电子信息学院武汉光电国家研究中心, 湖北 武汉 430074
邓磊敏:华中科技大学光学与电子信息学院武汉光电国家研究中心, 湖北 武汉 430074
曲良体:清华大学机械工程系, 教育部先进材料加工技术重点实验室, 摩擦学国家重点实验室, 北京 100084
熊伟:华中科技大学光学与电子信息学院武汉光电国家研究中心, 湖北 武汉 430074

联系人作者:熊伟(weixiong@hust.edu.cn)

【1】Yang P, Yan H, Mao S, et al. Controlled growth of ZnO nanowires and their optical properties [J]. Advanced Functional Materials. 2002, 12(5): 323-331.

【2】Pan Z, Lai H L. Au F C K, et al. Oriented silicon carbide nanowires: Synthesis and field emission properties [J]. Advanced Materials. 2000, 12(16): 1186-1190.

【3】Chan C K, Peng H, Liu G, et al. High-performance lithium battery anodes using silicon nanowires [J]. Nature Nanotechnology. 2008, 3(1): 31-35.

【4】Zhang Y J, Ago H, Liu J, et al. The synthesis of In, In2O3 nanowires and In2O3 nanoparticles with shape-controlled [J]. Journal of Crystal Growth. 2004, 264(1/2/3): 363-368.

【5】Kou X M, Fan X, Dumas R K, et al. Memory effect in magnetic nanowire arrays [J]. Advanced Materials. 2011, 23(11): 1393-1397.

【6】Wong E W, Sheehan P E, Lieber C M. Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes [J]. Science. 1997, 277(5334): 1971-1975.

【7】Huang Y. Directed assembly of one-dimensional nanostructures into functional networks [J]. Science. 2001, 291(5504): 630-633.

【8】Fan Z, Ho J C, Jacobson Z A, et al. Wafer-scale assembly of highly ordered semiconductor nanowire arrays by contact printing [J]. Nano Letters. 2008, 8(1): 20-25.

【9】Wang D, Chang Y L, Liu Z, et al. Oxidation resistant germanium nanowires: Bulk synthesis, long chain alkanethiol functionalization, and Langmuir-Blodgett assembly [J]. Journal of the American Chemical Society. 2005, 127(33): 11871-11875.

【10】Freer E M, Grachev O, Duan X, et al. High-yield self-limiting single-nanowire assembly with dielectrophoresis [J]. Nature Nanotechnology. 2010, 5(7): 525-530.

【11】Hangarter C M, Rheem Y, Yoo B, et al. Hierarchical magnetic assembly of nanowires [J]. Nanotechnology. 2007, 18(20): 205305.

【12】Lee J, Wang A, Rheem Y, et al. DNA assisted assembly of multisegmented nanowires [J]. Electroanalysis. 2007, 19(22): 2287-2293.

【13】Ushiba S, Shoji S, Masui K, et al. Direct laser writing of 3D architectures of aligned carbon nanotubes [J]. Advanced Materials. 2014, 26(32): 5653-5657.

【14】Tan D F, Li Y, Qi F J, et al. Reduction in feature size of two-photon polymerization using SCR500 [J]. Applied Physics Letters. 2007, 90(7): 071106.

【15】Kawata S, Sun H B, Tanaka T, et al. Finer features for functional microdevices [J]. Nature. 2001, 412(6848): 697-698.

【16】Shi Y, Xu B, Wu D, et al. Research progress on fabrication of functional microfluidic chips using femtosecond laser direct writing technology [J]. Chinese Journal of Lasers. 2019, 46(10): 1000001.
史杨, 许兵, 吴东, 等. 飞秒激光直写技术制备功能化微流控芯片研究进展 [J]. 中国激光. 2019, 46(10): 1000001.

【17】Yang X, Sun H L, Yue D M, Wu D, et al. Research progress on femtosecond laser fabrication microlens array [J]. Laser & Optoelectronics Progress. 2021, 58(5): 050005.
杨雪, 孙会来, 岳端木, 等. 飞秒激光制备微透镜阵列的研究进展 [J]. 激光与光电子学进展. 2021, 58(5): 050005.

【18】Li J J, Liu Y, Qu S L. Research progress on optical fiber functional devices fabricated by femtosecond laser micro-nano processing [J]. Laser & Optoelectronics Progress. 2020, 57(11): 111402.
李金健, 刘一, 曲士良. 飞秒激光微纳加工光纤功能器件研究进展 [J]. 激光与光电子学进展. 2020, 57(11): 111402.

【19】Gan Z, Cao Y, Evans R A, et al. Three-dimensional deep sub-diffraction optical beam lithography with 9nm feature size [J]. Nature Communications. 2013, 4: 2061.

【20】Ishitobi H, Shoji S, Hiramatsu T, et al. Two-photon induced polymer nanomovement [J]. Optics Express. 2008, 16(18): 14106-14114.

【21】Sun Z B, Dong X Z, Chen W Q, et al. Multicolor polymer nanocomposites: In situ synthesis and fabrication of 3D microstructures [J]. Advanced Materials. 2008, 20(5): 914-919.

【22】Xia H, Wang J, Tian Y, et al. Ferrofluids for fabrication of remotely controllable micro-nanomachines by two-photon polymerization [J]. Advanced Materials. 2010, 22(29): 3204-3207.

【23】Hsieh G W, Wang J J, Ogata K, et al. Stretched contact printing of one-dimensional nanostructures for hybrid inorganic-organic field effect transistors [J]. The Journal of Physical Chemistry C. 2012, 116(12): 7118-7125.

【24】Javey A, Nam S, Friedman R S, et al. Layer-by-layer assembly of nanowires for three-dimensional, multifunctional electronics [J]. Nano Letters. 2007, 7(3): 773-777.

【25】Lee H, Seong B, Kim J, et al. Direct alignment and patterning of silver nanowires by electrohydrodynamic jet printing [J]. Small. 2014, 10(19): 3918-3922.

【26】Chen S M, Gao H L, Zhu Y B, et al. Biomimetic twisted plywood structural materials [J]. National Science Review. 2018, 5(5): 703-714.

【27】Gao H L, Xu L, Long F, et al. Macroscopic free-standing hierarchical 3D architectures assembled from silver nanowires by ice templating [J]. Angewandte Chemie International Edition. 2014, 53(18): 4561-4566.

【28】Pevzner A, Engel Y, Elnathan R, et al. Confinement-guided shaping of semiconductor nanowires and nanoribbons: “writing with nanowires” [J]. Nano Letters. 2012, 12(1): 7-12.

【29】Liu X, Long Y Z, Liao L, et al. Large-scale integration of semiconductor nanowires for high-performance flexible electronics [J]. ACS Nano. 2012, 6(3): 1888-1900.

【30】Lin J H, Cretu O, Zhou W, et al. Flexible metallic nanowires with self-adaptive contacts to semiconducting transition-metal dichalcogenide monolayers [J]. Nature Nanotechnology. 2014, 9(6): 436-442.

【31】Wang S L, He Y H, Fang X S, et al. Structure and field-emission properties of sub-micrometer-sized Tungsten-Whisker arrays fabricated by vapor deposition [J]. Advanced Materials. 2009, 21(23): 2387-2392.

【32】Huang X H. El-Sayed I H, Qian W, et al. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods [J]. Journal of the American Chemical Society. 2006, 128(6): 2115-2120.

【33】Lee E P, Peng Z M, Cate D M, et al. Growing Pt nanowires as a densely packed array on metal gauze [J]. Journal of the American Chemical Society. 2007, 129(35): 10634-10635.

【34】Chen M S, Phang I Y, Lee M R, et al. Layer-by-layer assembly of Ag nanowires into 3D woodpile-like structures to achieve high density "hot spots" for surface-enhanced Raman scattering [J]. Langmuir. 2013, 29(23): 7061-7069.

【35】Zijlstra P, Paulo P M, Orrit M. Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod [J]. Nature Nanotechnology. 2012, 7(6): 379-382.

【36】Chaney S B, Shanmukh S, Dluhy R A, et al. Aligned silver nanorod arrays produce high sensitivity surface-enhanced Raman spectroscopy substrates [J]. Applied Physics Letters. 2005, 87(3): 031908.

【37】Tang L J, Li S, Han F, et al. SERS-active Au@Ag nanorod dimers for ultrasensitive dopamine detection [J]. Biosensors and Bioelectronics. 2015, 71: 7-12.

【38】Strickland A D, Batt C A. Detection of carbendazim by surface-enhanced Raman scattering using cyclodextrin inclusion complexes on gold nanorods [J]. Analytical Chemistry. 2009, 81(8): 2895-2903.

【39】Lan X, Lu X, Shen C, et al. Au nanorod helical superstructures with designed chirality [J]. Journal of the American Chemical Society. 2015, 137(1): 457-462.

【40】Guerrero-Martínez A, Auguié B. Alonso-Gómez J L, et al. Intense optical activity from three-dimensional chiral ordering of plasmonic nanoantennas [J]. Angewandte Chemie International Edition. 2011, 50(24): 5499-5503.

【41】Hartland G V, Besteiro L V, Johns P, et al. What''s so hot about electrons in metal nanoparticles? [J]. ACS Energy Letters. 2017, 2(7): 1641-1653.

【42】Neira A D, Wurtz G A, Ginzburg P, et al. Ultrafast all-optical modulation with hyperbolic metamaterial integrated in Si photonic circuitry [J]. Optics Express. 2014, 22(9): 10987-10994.

【43】Kawata S, Ono A, Verma P. Subwavelength colour imaging with a metallic nanolens [J]. Nature Photonics. 2008, 2(7): 438-442.

【44】Masui K, Shoji S, Asaba K, et al. Laser fabrication of Au nanorod aggregates microstructures assisted by two-photon polymerization [J]. Optics Express. 2011, 19(23): 22786-22796.

【45】Zhang R, Xiao X Z. L C, et al. Assembling of gold nanorods by femtosecond laser fabrication [J]. Acta Physica Sinica. 2014, 63(1): 014206.
张然, 肖鑫泽, 吕超, 等. 金纳米棒的飞秒激光组装研究 [J]. 物理学报. 2014, 63(1): 014206.

【46】Do J, Fedoruk M, J?ckel F, et al. Two-color laser printing of individual gold nanorods [J]. Nano Letters. 2013, 13(9): 4164-4168.

【47】Liu Y, Xiong W, Li D W, et al. Precise assembly and joining of silver nanowires in three dimensions for highly conductive composite structures [J]. International Journal of Extreme Manufacturing. 2019, 1(2): 025001.

【48】Chen H Y, Gao Y, Zhang H R, et al. Transmission-electron-microscopy study on fivefold twinned silver nanorods [J]. The Journal of Physical Chemistry B. 2004, 108(32): 12038-12043.

【49】Iijima S. Helical microtubules of graphitic carbon [J]. Nature. 1991, 354(6348): 56-58.

【50】Xiong W, Liu Y, Jiang L J, et al. Laser-directed assembly of aligned carbon nanotubes in three dimensions for multifunctional device fabrication [J]. Advanced Materials. 2016, 28(10): 2002-2009.

【51】Park C, Ounaies Z, Watson K A, et al. Dispersion of single wall carbon nanotubes by in situ polymerization under sonication [J]. Chemical Physics Letters. 2002, 364(3/4): 303-308.

【52】Kumar S G, Rao K S. Zinc oxide based photocatalysis: tailoring surface-bulk structure and related interfacial charge carrier dynamics for better environmental applications [J]. RSC Advances. 2015, 5(5): 3306-3351.

【53】Choi J, Chan S, Joo H, et al. Three-dimensional (3D) palladium-zinc oxide nanowire nanofiber as photo-catalyst for water treatment [J]. Water Research. 2016, 101: 362-369.

【54】Liu X Y, Shan C X, Jiao C, et al. Pure ultraviolet emission from ZnO nanowire-based p-n heterostructures [J]. Optics Letters. 2014, 39(3): 422-425.

【55】Zeng Y Y, Pan X H, Lu B, et al. Fabrication of flexible self-powered UV detectors based on ZnO nanowires and the enhancement by the decoration of Ag nanoparticles [J]. RSC Advances. 2016, 6(37): 31316-31322.

【56】Tiwale N. Zinc oxide nanowire gas sensors: fabrication, functionalisation and devices [J]. Materials Science and Technology. 2015, 31(14): 1681-1697.

【57】Zhou W, Dai X C, Lieber C M. Advances in nanowire bioelectronics [J]. Reports on Progress in Physics. 2017, 80(1): 016701.

【58】Chen H N, Yang S H. Hierarchical nanostructures of metal oxides for enhancing charge separation and transport in photoelectrochemical solar energy conversion systems [J]. Nanoscale Horizons. 2016, 1(2): 96-108.

【59】Wu W, Wen X, Wang Z L. Taxel-addressable matrix of vertical-nanowire piezotronic transistors for active and adaptive tactile imaging [J]. Science. 2013, 340(6135): 952-957.

【60】Wang Z, Pan X M, He Y H, et al. Piezoelectric nanowires in energy harvesting applications [J]. Advances in Materials Science and Engineering. 2015, 2015: 1-21.

【61】Fonseca R D, Correa D S, Paris E C, et al. Fabrication of zinc oxide nanowires/polymer composites by two-photon polymerization [J]. Journal of Polymer Science Part B: Polymer Physics. 2014, 52(4): 333-337.

【62】Long J, Xiong W, Wei C, et al. Directional assembly of ZnO nanowires via three-dimensional laser direct writing [J]. Nano Letters. 2020, 20(7): 5159-5166.

【63】Johnson J C, Yan H Q, Schaller R D, et al. Near-field imaging of nonlinear optical mixing in single zinc oxide nanowires [J]. Nano Letters. 2002, 2(4): 279-283.

【64】Stallinga P. Electronic transport in organic materials: Comparison of band theory with percolation/(variable range) hopping theory [J]. Advanced Materials. 2011, 23(30): 3356-3362.

【65】Waser R, Aono M. Nanoionics-based resistive switching memories [J]. Nature Materials. 2007, 6(11): 833-840.

【66】Jeong D S, Thomas R, Katiyar R S, et al. Emerging memories: Resistive switching mechanisms and current status [J]. Reports on Progress in Physics. 2012, 75(7): 076502.

【67】Harada Y, Asakura T. Radiation forces on a dielectric sphere in the Rayleigh scattering regime [J]. Optics Communications. 1996, 124(5/6): 529-541.

【68】Reece P J, Toe W J, Wang F, et al. Characterization of semiconductor nanowires using optical tweezers [J]. Nano Letters. 2011, 11(6): 2375-2381.

引用该论文

Long Jing,Jiao Binzhang,Fan Xuhao,Liu Yuncheng,Deng Leimin,Qu Liangti,Xiong Wei. Femtosecond Laser Assembly of One-Dimensional Nanomaterials and Their Application[J]. Chinese Journal of Lasers, 2021, 48(2): 0202017

龙婧,焦玢璋,范旭浩,刘耘呈,邓磊敏,曲良体,熊伟. 飞秒激光组装一维纳米材料及其应用[J]. 中国激光, 2021, 48(2): 0202017

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF