首页 > 论文 > 光谱学与光谱分析 > 34卷 > 2期(pp:331-334)

纳米晶硅的掺杂及表面改性研究

Silicon Nanocrystals Doping and Surface Modification

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

采用基于密度泛函理论的第一性原理方法(DMOL3程序), 在广义梯度近似(GGA)下, 计算了硅纳米晶(Si75H76)在B和P掺杂和乙基(—CH2CH3)、 异丙基(—CH(CH3)2)表面改性等情形下态密度、 结合能及能隙的变化。 结果表明: 掺杂对体系的禁带宽度(约3.12 eV)几乎没有影响, 但会引入带隙态; 三配位的B掺杂, 在禁带中靠近导带约0.8 eV位置引入带隙态, 三配位的P掺杂在禁带中靠近价带0.2 eV位置引入带隙态; 四配位的B掺杂, 在禁带中靠近价带约0.4 eV位置引入带隙态, 四配位的P掺杂在禁带中靠近导带约1.1 eV位置引入带隙态; 且同等掺杂四配位时体系能量要低于三配位; 适当的乙基或异丙基表面覆盖可以降低体系的总能量, 且表面覆盖程度越高体系能量越低, 但在表面嫁接有机基团过多将导致过高位阻, 计算时系统不能收敛。

Abstract

Using the first-principles method based on density functional theory, at the generalized gradient approximation (GGA), the state density, the change of binding energy and the energy gap of the silicon nanocrystals (Si75H76) with the circumstances of boron (B)-doped , phosphorus (P)-doped and the surface modification with ethyl (CH2CH3), isopropyl (—CH(CH3)2) have been calculated. The results showed that the B or P-doped have little impact on the energy gap value (3.12 eV) of silicon nanocrystals (SiNcs), except that some energy levels will be introduced in the forbidden band. The energy level caused by three-coordinated B-doped SiNcs is Ec-0.8 eV, while it is Ev+0.2 eV for the three-coordinated P-doped. However, the energy level position is Ev+0.4 eV for the four-coordinated B-doped SiNcs, and Ec-1.1 eV for the four-coordinated P-doped. Total energy of the system with the four-coordinated doped is lower than that with the three-coordinated doped in the other same conditions. The total energy of SiNcs system lessen when the surface is modified with appropriate ethyl or isopropyl. The total energy decreases with the surface coverage of organo-functional group increasing. But, the calculation can’t converge because of too high resistance when the SiNcs surface are grafted with too many organic groups.

广告组6 - 调制器
补充资料

中图分类号:O474

DOI:10.3964/j.issn.1000-0593(2014)02-0331-04

基金项目:The National 863 Program (2011AA050515) fund support, Sichuan Normal University for the program support

收稿日期:2013-05-20

修改稿日期:2013-08-25

网络出版日期:--

作者单位    点击查看

张念波:四川大学材料科学与工程学院, 四川 成都610064
田金秀:四川大学材料科学与工程学院, 四川 成都610064
李卫:四川大学材料科学与工程学院, 四川 成都610064
武莉莉:四川大学材料科学与工程学院, 四川 成都610064
黎兵:四川大学材料科学与工程学院, 四川 成都610064
张静全:四川大学材料科学与工程学院, 四川 成都610064
冯良桓:四川大学材料科学与工程学院, 四川 成都610064
徐明:西南民族大学信息材料四川省重点实验室, 四川 成都610041四川师范大学固体物理研究所, 四川 成都610068

备注:ZHANG Nian-bo, (1987—), a Postgraduate in Sichuan University

【1】Thelander C, Agarwal P ,Brongersma S, et al. Materialstoday, 2006, 9(10): 28.

【2】FAN Wei-xing, HAN Jing-hua, LI Hai-bo, et al. Spectroscopy and Spectral Analysis, 2011, 31(12): 3185.

【3】Walters R J, Bourianoff G I, Atwater H A. Nature Materials, 2005, 4(2): 143.

【4】Anders Hagfeldt. Acc. Chem. Res., 2000, 33 (5): 269.

【5】Zou M, Cai L, Wang H, et al. Tribology Letters, 2005, 20(1): 43.

【6】Gioug Oh, Dooyeon Kim, Sangil Kim, et al. Proceedings ICHIT06, 2006, 2: 730.

【7】Edelman F, Chack A, Weil R. Solar Energy Materials and Solar Cells, 2003, 77(2): 125.

【8】Tomohiro Nozaki, Kenji Sasaki, Tomohisa Ogino, et al. Thermal Sci. & Eng., 2006, 14 (4): 75.

【9】Holman Zachary C, Kortshagen Uwe R. Nano Lett., 2011, 11(5): 2133.

【10】Mangolini L, Thimsen E, Kortshagen U. Nano Lett., 2005, 5(4): 655.

【11】Zhao Yujun, Geng W T, Freeman A J. Physical Review B, 2002, 65: 113202.

【12】Chan T L, Murilo L. T, Efthimios Kaxiras, et al. Nano Lett., 2008, 8(2):596.

【13】Pi Xiaodong, Chen Xiaobo, Yang Deren. J. Phys. Chem. C, 2011, 115(20): 9838.

【14】Federico Iori, Elena Degoli, Eleonora Luppi, et al. Journal of Luminescence, 2006, 121(2): 335.

引用该论文

ZHANG Nian-bo,TIAN Jin-xiu,LI Wei,WU Li-li,LI Bing,ZHANG Jing-quan,FENG Liang-huan,XU Ming. Silicon Nanocrystals Doping and Surface Modification[J]. Spectroscopy and Spectral Analysis, 2014, 34(2): 331-334

张念波,田金秀,李卫,武莉莉,黎兵,张静全,冯良桓,徐明. 纳米晶硅的掺杂及表面改性研究[J]. 光谱学与光谱分析, 2014, 34(2): 331-334

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF