首页 > 论文 > 光谱学与光谱分析 > 34卷 > 2期(pp:426-430)

不同静水压力条件下正长石的红外、 拉曼光谱特征研究

Combined Use of Infrared and Raman Spectra in the Characterization of Orthoclase under Various Hydrostatic Pressures

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

选择新疆巴里坤花岗岩中的无色和粉红色两种正长石矿物进行了静水压力实验研究。 使用立方氧化锆压腔, 以石英做压标对正长石矿物进行了常温和100~600 MPa不同静水压力条件下的原位压力测试实验。 对不同压力条件下正长石矿物的含水性进行了拉曼光谱和傅里叶转换红外光谱表征。 分析发现正长石的拉曼位移与样品所受到的静水压力呈显著的正相关关系。 长石结构基团的M—O振动峰、 AlⅣ—O—Si弯曲振动峰和[SiO4]四面体基团振动的拉曼峰随静水压力的增大而有规律地向高频方向偏移, 漂移距离分别为2, 2.19和小于2 cm-1。 红外光谱分析表明在一定的压力条件下进入到粉红色长石中的水较无色长石中的水含量为多。 正长石红外光谱中以3 420 cm-1为中心的水分子吸收峰的强度和积分面积随着静水压力的增大而增强。无色长石和粉红色长石的积分面积分别由常压下的120和1 383 cm-1提高到600 MPa 条件下的1 570和2 001 cm-1。 实验结果预示着正长石在地壳一定深度的含水围压条件下, 围岩中的水可以进入到长石矿物中。

Abstract

Colorless and pink orthoclase from Balikun granite body, East Zhunger in Xinjiang, served as the samples for the research on hydrostatic pressure experiment. The in-situ hydrostatic pressure test for orthoclases was conducted at the room temperature and pressures from 100 to 600 MPa using cubic zirconia anvil cell, with quartz as pressure gauge. The water located in the orthoclases for the conditions of different hydrostatic pressures was characterized through the methods of Fourier transform infrared (FTIR) and Raman spectra. The results showed that there was a linear correlation between the shifting of Raman bands and hydrostatic pressure applied to the feldspar. All of vibration peaks of M—O structural groups in orthoclases,the bending vibration peaks of Si(AlⅣ)—O—Si bond and tetrahedron groups of [SiO4] in Raman spectra shifted toward the higher frequency regularly, the drift distance is 2, 2.19 and less than 2 cm-1 respectively. The spectra of FTIR suggested that there was more water in colorless orthoclases than the pink one under certain conditions of hydrostatic pressure. The intensity and integral area centered at 3 420 cm-1 in FTIR spectra increased with the rising of hydrostatic pressure. The integral area for colorless and pink feldspar in FTIR spectra rose from 120, 1 383 cm-1 under normal pressure to 1 570, 2 001 cm-1 at 600 MPa respectively. The experimental results might indicate that the water in the earth crust could enter the orthoclases in certain condition of the aqueous confining pressure.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O657.3

DOI:10.3964/j.issn.1000-0593(2014)02-0426-05

基金项目:The Natural Science Foundation of China (41172043)

收稿日期:2013-04-09

修改稿日期:2013-07-08

网络出版日期:--

作者单位    点击查看

刘瑞:长春工程学院勘查与测绘工程学院, 吉林 长春130021
王志华:长春工程学院勘查与测绘工程学院, 吉林 长春130021
徐强:长春工程学院勘查与测绘工程学院, 吉林 长春130021
于娜:长春工程学院勘查与测绘工程学院, 吉林 长春130021
曹妙聪:长春工程学院勘查与测绘工程学院, 吉林 长春130021

联系人作者:LIURui(gglr984@sohu.comIntroduction)

备注:LIU Rui, (1963—), Professor, Changchun Institute of Technology, Engaging in Research on Mineralogy and Environmental Mineral Materials

【1】Peslier H Anne. Journal of Volcanology and Geothermal Research, 2010,197(2): 239.

【2】Thomas R, Davidson P. Ore Geology Reviews, 2012, 46: 32.

【3】Liu X. Earth and Planetary Science Letters, 2006, 246: 317.

【4】Zhu C, Lu P. Geochimica et Cosmochimica Acta, 2009, 73: 3171.

【5】Baker R D, Alletti M. Earth-Science Reviews, 2012, 114: 298.

【6】Deng L, Liu X, Liu H, et al. Earth and Planetary Science Letters, 2010, 29(8): 427.

【7】Allan M M, Turner A, Yardley B. Applied Geochemistry, 2011, 26: 1289.

【8】Kerisit S, Liu C, Ilton S E. Geochimica et Cosmochimica Acta, 2008, 72: 1481.

【9】Yang X. Geochimica et Cosmochimica Acta, 2012, 97(1): 46.

【10】Ostrooumova M, Hernández-Bernal M. Spectrochimica Acta Part A, 2011, 83: 437.

【11】Holtz F, Beny J M, Myson B O, et al. Chemical Geology, 1996, 128(1): 25.

【12】Wang Z C, Dresen G, Andrut M. Physics and Chemistry of Earth, 1997, 22(1-2): 1.

引用该论文

LIU Rui,WANG Zhi-hua,XU Qiang,YU Na,CAO Miao-cong. Combined Use of Infrared and Raman Spectra in the Characterization of Orthoclase under Various Hydrostatic Pressures[J]. Spectroscopy and Spectral Analysis, 2014, 34(2): 426-430

刘瑞,王志华,徐强,于娜,曹妙聪. 不同静水压力条件下正长石的红外、 拉曼光谱特征研究[J]. 光谱学与光谱分析, 2014, 34(2): 426-430

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF