固体激光器波前畸变自适应校正技术及研究进展
Solid-State Laser Distortion Wavefront Adaptive Correction Technology and Its Research Progress
摘要
自适应光学(AO)作为一种主动光学补偿技术,由于具有结构简单、校正效果好、可闭环运行等优势,被大量用于校正激光波前畸变,并于近年逐渐应用于高能激光器系统中。综述了AO 系统工作的基本原理,系统论述了近年来国内外在AO 系统校正固体激光畸变方面的研究进展。按照校正固体激光器波前畸变的AO 系统中有无采用波前传感器,将其分为无波前探测和有波前探测的AO 校正技术进行介绍,分析了各个研究工作的关键性技术。最后总结了目前存在的技术难题,并对AO 技术在固体激光器中的应用前景进行了展望。
Abstract
As an active optical compensation technology, adaptive optics (AO) is used to correct wavefront distortion extensively because of its advantages such as simplicity, instantaneity and validity. In recent years, AO technology is increasingly used in high- energy laser system. We review the basic principles of the AO system, and discuss the research progress of solid- state AO correction technology at home and aboard. Introduction to two categories is presented according to if there is a wavefront sensor in an AO system to correct the wavefront distortion in solid state lasers, and the key technologies are introduced. Finally, theexisting technical difficulties are summarized, and the application prospect is presented.
中图分类号:TN248.1
所属栏目:综述
责任编辑:胡冰
基金项目:国家自然科学基金(61205136)、中国科学院光电研究院创新项目(Y30B16A13Y)
收稿日期:2013-10-20
修改稿日期:2013-11-25
网络出版日期:2014-03-01
作者单位 点击查看
樊仲维:中国科学院光电研究院, 北京 100094
余锦:中国科学院光电研究院, 北京 100094
葛文琦:中国科学院光电研究院, 北京 100094
康治军:中国科学院光电研究院, 北京 100094中国科学院大学, 北京 100049
唐熊忻:中国科学院光电研究院, 北京 100094
貊泽强:中国科学院光电研究院, 北京 100094
王昊成:中国科学院光电研究院, 北京 100094中国科学院大学, 北京 100049
王治昊中国科学院光电研究院, 北京 100094:中国科学院大学, 北京 100049
联系人作者:郭广妍(guoguangyan@aoe.ac.cn)
备注:郭广妍(1988—),女,硕士研究生,主要从事激光技术及自适应光学系统方面的研究。
【1】Hammer D X, Ferguson R D, Bigelow C E, et al.. Precision targeting with a tracking adaptive optics scanning laser ophthalmoscope [C]. SPIE, 2006, 6138: 613811.
【2】Wizinowich P L, Le Mignant D, Bouchez A H, et al.. The W. M. Keck Observatory laser guide star adaptive optics system: overview [J]. Publications of the Astronomical Society of the Pacific, 2006, 118(840): 297-309.
【3】Wang Hailin, Huang Weiling, Zhou Zuoyou, et al.. Experimental study of a high power and high efficiency CW diodeside-pumped Nd: YAG laser [J]. Optics & Laser Technology, 2004, 36(1): 69- 73.
【4】Yang Ping, Ning Yu, Lei Xiang, et al.. Enhancement of the beam quality of non-uniform output slab laser amplifier with a 39-actuator rectangular piezoelectric deformable mirror[J]. Opt Express, 2010, 18(7): 7121-7130.
【5】Babcock, Horace W. The possibility of compensating astronomical seeing[J]. Publications of the Astronomical Society of the Pacific, 1953, 65(386): 229-236.
【6】Jiang Wenhan. Adaptive optics [J]. Nature Magazine, 2006, 28(1): 7-13.
姜文汉. 自适应光学技术[J]. 自然杂志, 2006, 28(1): 7-13.
【8】Jiang Wenhan, Huang Shufu, Ling Ning, et al.. Hill climbing wavefront correcting system for large laser engineering [C]. SPIE, 1988, 965: 266-272.
【9】J T Salmon, E S Bliss, T W Long, et al.. Real-time wavefront correction system using a zonal deformable mirror and a Hartmann sensor [C]. SPIE, 1991, 1542: 459-467.
【10】A V Kudryashov, V V Samarkin. Control of high power CO2 laser beam by adaptive optical elements [J]. Opt Commun, 1995, 118(3): 317-322.
【11】U Greiner, H Klingenberg. Thermal lens correction of a diode- pumped Nd:YAG laser of high TEM00 power by an adjustable-curvature mirror [J]. Opt Lett, 1994, 19(16): 1207-1209.
【12】T Y Cherezova, L N Kaptsov, A V Kudryashov. Cw industrial rod YAG: Nd3 + laser with an intracavity active bimorph mirror [J]. Appl Opt, 1996, 35(15): 2554-2561.
【13】F Druon, G Chériaux, J Faure, et al.. Wave-front correction of femtosecond terawatt lasers by deformable mirrors [J]. Opt Lett, 1998, 23(13): 1043-1045.
【14】M R Armstrong, P Plachta, E A Ponomarev, et al.. Versatile 7-fs optical parametric pulse generation and compression by use of adaptive optics [J]. Opt Lett, 2001, 26(15): 1152-1154.
【15】J W Hardy. Adaptive Optics for Astronomical Telescopes [M]. Oxford: Oxford University Press, 1998.
【16】Jiang Wenhan. Modern Instrumentation Technology and Design [M]. Beijing: Science Press, 2003. 1049-1114.
姜文汉. 现代仪器仪表技术与设计[M]. 北京: 科学出版社, 2003. 1049-1114.
【17】Jiang Wenhan, Xian Hao, Yang Zeping, et al.. Applications of Shack- Hartmann wavefront sensor [J]. Chinese J Quantum Electronics, 1998, 15(2): 228-235.
姜文汉, 鲜浩, 杨泽平, 等. 哈特曼波前传感器的应用[J]. 量子电子学报, 1998, 15(2): 228-235.
【19】Wang Sanhong. Application of Stochastic- Parrallel- Gradient- Descent Adaptive Optics Techniques in Beam Cleanup [D]. Changsha: National University of Defense Technology, 2009. 5-6.
王三宏. 随机并行梯度下降自适应光学技术在光束净化中的应用[D]. 长沙:国防科学技术大学, 2009. 5~6.
【20】Vorontsov M A, Carhart G W, Ricklin J C. Adaptive phase- distortion correction based on parallel gradient- descent optimization [J]. Opt Lett, 1997, 22(12): 907-909.
【21】Carhart G W, Ricklin J C, Sivokon V P, et al.. Parallel perturbation gradient descent algorithm for adaptive wavefront correction [C]. SPIE, 1997, 3126: 221-227.
【22】Polejaev V I, Vorontsov M A. Adaptive active imaging system based on radiation focusing for extended targets [C]. SPIE, 1997, 3126: 216-220.
【23】M A Voront sov, V P Sivokon. Stochastic parallel gradient descent technique for high- resolution wave- front phasedistortion correction [J]. J Opt Soc Am A, 1998, 15(10): 2745-2758.
【24】M A Voront sov, G W Carhart, M Cohen, et al.. Adaptive optics based on analog parallel stochastic optimization: analysis and experimental demonstration [J]. J Opt Soc Am A, 2000, 17(8): 1440-1453.
【25】M A Voront sov. Decoupled stochastic parallel gradient descent optimization for adaptive optics: integrated approach for wavefront sensor in formation fusion [J]. J Opt Soc Am A, 2002, 19(2): 356- 368.
【26】T Wey rauch, M A Voront sov. Dynamic wave- front distortion compensation with a 134- control channel submillisecond adaptive system [J]. Opt Lett, 2002, 27(9): 751-753.
【27】M Yu, M A Voront sov. Bandwidth estimation for adaptive optical systems based on stochastic parallel gradient descent optimization [C]. SPIE, 2004, 5553: 189-199.
【28】Tan Zuojun, Chen Haiqing, Kang Jingran, et al.. Experiment on correction ability to the static wavefront aberration of MEMS-DMs [J]. Infrared and Laser Engineering, 2008, 37(6): 1070-1073.
谭佐军, 陈海清, 康竞然, 等. MEMS 微变形反射镜校正波前静态畸变实验[J]. 红外与激光工程, 2008, 37(6): 1070-1073.
【29】R H Freeman, R J Freiberg, H R Garcia. Adaptive laser resonator [J]. Opt Lett, 1978, 2(3): 61- 63.
【30】R R Stephens, R C Lind. Experimental study of an adaptive-laser resonator [J]. Opt Lett, 1978, 3(3): 79-81.
【31】C Harney. Active laser resonator control techniques [J]. Appl Opt, 1978, 17(11): 1671-1672.
【33】N Kugler, S Seidel, H Weber. High-power Nd:YAG laser with birefringence compensation and adaptive HR-mirror [J]. Laser Physics, 1999, 9(1): 299-303.
【34】M Gerber, A V Kudryashov, T Graf. Intracavity beam shaping of a Nd:YAG laser [C]. SPIE, 2002, 4629: 58-66.
【40】Xiang Lei, Bing Xu, Ping Yang, et al.. Beam cleanup of a 532- nm pulsed solid- state laser using a bimorph mirror [J]. Chin Opt Lett, 2012, 10(2): 021401.
【41】R A Zacharias, N R Beer, E S Bliss, et al.. National Ignition Facility alignment and wavefront control [C]. SPIE, 2004, 5341: 168-179.
【42】K Akaoka, S Harayama, K Tei, et al.. Close loop wavefront correction of Ti:sapphire chirped pulse amplification laser beam [C]. SPIE, 1998, 3265: 219-225.
【43】S-W Bahk, P Rousseau, T Planchon, et al.. Generation and characterization of the highest laser intensities (1022 W/cm2) [J]. Opt Lett, 2004, 29(24): 2837-2839.
【44】L M Flath, J R An, J M Brase, et al.. Real-time control system for adaptive resonator [C]. SPIE, 2000, 4118: 119-125.
【45】K N LaFortune, R L Hurd, E M Johansson, et al.. Intracavity adaptive correction of a 10- kW solid state heat- capacity laser [C]. SPIE, 2004, 5333: 53-61.
【46】H Baumhacker, G Pretzler, K Witte, et al.. Correction of strong phase and amplitude modulations by two deformable mirrors in a multistaged Ti:sapphire laser [J]. Opt Lett, 2002, 27(17): 1570-1572.
【47】S Ito, H Ishikawa, T Miura, et al.. Seven- terawatt Ti:sapphire laser system operating at 50 Hz with high beam quality for laser Compton femtosecond X-ray generation [J]. Appl Phys B, 2003, 76(5): 497-503.
【48】J Zou, B Wattellier, J Fuchs, et al.. High focusability performance obtained on the LULI 100TW laser facility by use of a dielectric coated deformable mirror [C]. SPIE, 2004, 5333: 37-44.
【49】S Fourmaux, S Payeur, A Alexandrov, et al.. Laser beam wavefront correction for ultra high intensities with the 200 TW laser system at the advanced laser light source [J]. Opt Express, 2008, 16(16): 11987-11994.
【52】Ren Zhijun, Liang Xiaoyan, Yu Hongliang, et al.. Efficient spherical wavefront correction near the focus for the 0.89 PW/29.0 fs Ti:sapphire laser beam [J]. Chin Phys Lett, 28(2): 024201.
引用该论文
Guo Guangyan,Fan Zhongwei,Yu Jin,Ge Wenqi,Kang Zhijun,Tang Xiongxin,Mo Zeqiang,Wang Haocheng,Wang Zhihao. Solid-State Laser Distortion Wavefront Adaptive Correction Technology and Its Research Progress[J]. Laser & Optoelectronics Progress, 2014, 51(3): 030001
郭广妍,樊仲维,余锦,葛文琦,康治军,唐熊忻,貊泽强,王昊成,王治昊中国科学院光电研究院, 北京 100094. 固体激光器波前畸变自适应校正技术及研究进展[J]. 激光与光电子学进展, 2014, 51(3): 030001
被引情况
【1】唐景平,胡丽丽,陈树彬,陈伟,王标,翁泽安,徐永春,陈尤阔,邹兆松,胡俊江,温磊,李顺光. 大尺寸连熔N31型掺钕磷酸盐激光玻璃的性能研究. 中国激光, 2015, 42(2): 206003--1
【2】彭家琪,胡小川,陈丽霞,张彬. 变形镜结构参数对高功率激光相位特性的影响. 光学学报, 2015, 35(5): 514001--1
【3】罗帅,王家秋,张彬. 压电陶瓷驱动器疲劳特性对变形镜校正能力的影响. 中国激光, 2018, 45(9): 905002--1