首页 > 论文 > 中国激光 > 41卷 > 5期(pp:502002--1)

小型化、低噪声内腔倍频Nd:YAP/KTP单频激光器

Compactand Low-Noise Intracavity Frequency-Doubled Single-Frequency Nd:YAP/KTP Laser

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

通过理论分析和实验讨论了内腔倍频Nd:YAP/KTP单频激光器的强度噪声特性,并通过减小输出耦合镜对1080 nm基频光的透射率和优化谐振腔参数等办法,使基频光在环形谐振腔内的损耗降低为0.9%,从而减小了真空起伏引入的强度噪声。在输出耦合镜对1080 nm基频光透射率为0.2%时,获得了最高输出功率为420/60 mW的540/1080 nm双波长输出单频激光器,其强度噪声在1.5 MHz之后达到散粒噪声极限。

Abstract

The intensity noise characteristics of a compact and low-noise intracavity frequency-doubled single-frequency Nd:YAP/KTP laser is analyzed theoretically and experimentally. By reducing the transmission rate at 1080 nm of the output coupling mirror, optimizing the parameters of the resonator, and so on. The intracavity losses decrease to 0.9%. As a result, the intensity noise of the output beam, which induced from vacuum fluctuations, is reduced to a lower level. When the transmission rate at 1080 nm of the output coupling is 0.2%, an output power of 420/60 mW at 540/1080 nm dual wavelengths single-frequency laser is manufactured, and its intensity noise is reduced to shot noise limit above 1.5 MHz.

广告组5 - 光束分析仪
补充资料

中图分类号:TN248

DOI:10.3788/cjl201441.0502002

所属栏目:激光物理

责任编辑:宋梅梅  信息反馈

基金项目:国家自然科学基金(61008001,61227015),国家973计划(2010CB923101),山西省自然科学基金(2011021003-2)

收稿日期:2013-10-31

修改稿日期:2013-11-26

网络出版日期:--

作者单位    点击查看

杨文海:山西大学光电研究所量子光学与光量子器件国家重点实验室, 山西 太原 030006
王雅君:山西大学光电研究所量子光学与光量子器件国家重点实验室, 山西 太原 030006
李志秀:山西大学光电研究所量子光学与光量子器件国家重点实验室, 山西 太原 030006
郑耀辉:山西大学光电研究所量子光学与光量子器件国家重点实验室, 山西 太原 030006

联系人作者:杨文海(baiduyangwenhai@163.com)

备注:杨文海(1987—),男,硕士研究生,主要从事全固态激光技术方面的研究。

【1】Y J Wang, Y H Zheng, C D Xie, et al.. High-power low-noise Nd:YAP/LBO laser with dual wavelength outputs[J]. IEEE J Quantum Electronic, 2011, 47(7): 1006-1013.

【2】H Vahlbruch, M Mehmet, S Chelkowski, et al.. Observation of squeezed light with 10-dB quantum-noise reduction[J]. Phys Rev Lett, 2008, 100(3): 033602.

【3】S L Braunstein, P V Loock. Quantum information with con-tinuous variables[J]. Rev Mod Phys, 2005, 77(2): 513-577.

【4】Y M Lian, C D Xie, K C Peng. Continuous variable multipartite entanglement and optical implementations of quantum communication networks[J]. New J Phys, 2007, 9(9): 314.

【5】Zheng Yaohui, Li Fengqin, Zhang Kuanshou, et al.. Progress of all-solid-state single-frequency lasers[J]. Chinese J Lasers, 2009, 36(7): 1635-1642.
郑耀辉, 李凤琴, 张宽收, 等. 全固态单频激光器研究进展[J]. 中国激光, 2009, 36(7): 1635-1642.

【6】Zheng Yaohui, Lu Huadong, Li Fengqin, et al.. All-solid-state high-efficiency high-power Nd:YVO4/KTP laser of single-srequency operation[J]. Chinese J Lasers, 2007, 34(6): 739-742.
郑耀辉, 卢华东, 李凤琴, 等. 全固态高输出功率单频Nd:YVO4/KTP激光器[J]. 中国激光, 2007, 34(6): 739-742.

【7】Zheng Yaohui, Wang Yajun, Peng Kunchi. Single-end pumping, sing-frequency Nd:YVO4/LBO laser with output power of 21.5 W[J]. Chinese J Lasers, 2012, 39(6): 0602011.
郑耀辉, 王雅君, 彭堃墀. 输出功率为21.5 W的单端抽运Nd:YVO4/LBO单频激光器[J]. 中国激光, 2012, 39(6): 0602011.

【8】Feng Tao, Zhang Xuejie, Ren Zhiyuan, et al.. Frequency stabilization laser based on non-planar ring oscillator[J]. Acta Optica Sinica, 2013, 33(10): 1014001.
冯涛, 张雪洁, 任志远, 等. 频率稳定的非平面环形腔激光器[J]. 光学学报, 2013, 33(10): 1014001.

【9】L A Wu, M Xiao, H J Kimble. Squeezed states of light from an optical parametric oscillator[J]. J Opt Soc Amer B, 1987, 4(10): 1465-1475.

【10】X J Jia, X L Su, Q Pan, et al.. Experimental demonstration of unconditional entanglement swapping for continuous variables[J]. Phys Rev Lett, 2004, 93(25): 250503.

【11】X Su, W Wang, Y Wang. Continuous variable quantum key distribution based on optical entangled states without signal modulation[J]. Europhys Lett, 2009, 87(2): 20005.

【12】N C Menicucci, P Van Loock, M Gu, et al.. Universal quantum computation with continuous-variable cluster states[J]. Phys Rev Lett, 2006, 97(11): 110501.

【13】J Yoshikawa, Y Miwa, A Huck, et al.. Demonstration of a quantum nondemolition sum gate[J]. Phys Rev Lett, 2008, 101(25): 250501.

【14】Zheng Yaohui, Wang Yajun, Peng Kunchi. Thermal lens determination in solid-state laser by using astigmatic cavity[J]. Chinese J Lasers, 2011, 38(9): 0908006.
郑耀辉, 王雅君, 彭堃墀. 一种利用像散腔测量热透镜焦距的方法[J]. 中国激光, 2011, 38(9): 0908006.

【15】Y H Zheng, Y J Wang, K C Peng. A high-power single-frequency 540 nm laser obtained by intracavity frequency doubling of an Nd:YAP laser[J]. Chin Phys Lett, 2012, 29(4): 044208.

【16】Li Xiaoying, Jing Jietai, Pan Qing, et al.. Design of LD pumped type Ⅱ noncritical phase-matching intracavity frequency-doubled Nd:YAP/KTP ring laser[J]. Chinese J Lasers, 2001, 28(10): 865-869.
李小英, 荆杰泰, 潘庆. LD抽运Ⅱ类非临界位相匹配内腔倍频单频Nd:YAP/KTP激光器的设计[J]. 中国激光, 2001, 28(10): 865-869.

【17】X L Su, A H Tan, X J Jia, et al.. Experimental demonstration of quantum entanglement between frequency-nondegenerate optical twin beams[J]. Opt Lett, 2006, 31(8): 1133-1135.

【18】X L Su, A H Tan, X J Jia, et al.. Experimental preparation of quadripartite cluster and greenberger-horne-zeilinger entangled states for continuous variables[J]. Phys Rev Lett, 2007, 98(7): 070502.

【19】Su Xiaolong. Generation of Quadripartite Entangled Optical Field and Quantum Key Distribution with Continuous Variables[D]. Taiyuan: Shanxi University, 2007. 49-80.
苏晓龙. 连续变量四组份纠缠光场产生和量子保密通信[D]. 太原: 山西大学, 2007. 49-80.

【20】X L Su, Y P Zhao, S H Hao, et al.. Experimental preparation of eight-partite cluster state for photonic qumodes[J]. Opt Lett, 2012, 37(24): 5178-5180.

【21】Y Wang, H Shen, X L Jin, et al.. Experimental generation of 6 dB continuous variable entanglement from a nondegenerate optical parametric amplifier[J]. Opt Express, 2010, 18(6): 6149-6155.

【22】Y H Zheng, Z Q Wu, M R Huo, et al.. Generation of a continuous-wave squeezed vacuum state at 1.3 μm by employing a home-made all-solid-state laser as pump source[J]. Chin Phys B, 2013, 22(9): 094206.

【23】J L Liu, Q Liu, H Li, et al.. Low noise continuous-wave single-frequency 1.5-μm laser generated by a singly resonant optical parametric oscillator[J]. Chin Phys B, 2011, 20(11): 114215.

【24】X Ding, S M Zhang, H M Ma, et al.. Continuous-wave mid-infrared intracavity singly resonant optical parametric oscillator based on periodically poled lithium niobate[J]. Chin Phys B, 2008, 17(1): 211-216.

【25】Peng Kunchi. Generation and application of squeezed state light sub-shot-noise-limit optical measurenent and quantum information[J]. Physics, 2001, 30(5): 300-305.
彭堃墀. 光场压缩态的产生及其在亚散粒噪声光学测量和量子信息中的应用[J]. 物理, 2001, 30(5): 300-305.

【26】Yin Wen, Li Yuanxiang, Zhou Zeming, et al.. Remote sensing image fusion based on sparse representation[J]. Acta Optica Sinica, 2013, 33(4): 0428003.
尹雯, 李元祥, 周则明, 等. 基于稀疏表示的遥感图像融合法[J]. 光学学报, 2013, 33(4): 0428003.

【27】C W Gardiner, M J Collett. Input and output in damped quantum systems: quantum stochastic differential equations and the master equation[J]. Phys Rev A, 1985, 31(6): 3761-3774.

【28】Liang Xu, Wang Yunxiang, Qiu Qi, et al.. Intensity noise properties and suppression of nonplanar ring oscillator[J]. Chinese J Lasers, 2012, 39(12): 1202006.
梁旭, 王云祥, 邱琪, 等. 非平面环形腔激光器的强度噪声及其抑制[J]. 中国激光, 2012, 39(12): 1202006.

【29】H D Lu, J Su, C D Xie, et al.. Experimental investigation about influences of longitudinal-mode structure of pumping source on a Tisapphire laser[J]. Opt Express, 2011, 19(2): 1344-1353.

【30】Zhang Jing, Zhang Kuanshou, Chen Yanli, et al.. Intensity noise properties of LD pumped single-frequency ring lasers[J]. Acta Optica Sinica, 2000, 20(10): 1311-1316.
张靖, 张宽收, 陈艳丽, 等. 激光二极管抽运的环形单频激光器的强度噪声特性研究[J]. 光学学报, 2000, 20(10): 1311-1316.

【31】Chen Yanli, Zhang Jing, Li Yongmin, et al.. Reduction of intensity noise of single-frequency Nd:YVO4 laser using mode cleaner[J]. Chinese J Lasers, 2001, 28(3): 197-200.
陈艳丽, 张靖, 李永民, 等. 利用模清洁器降低单频Nd:YVO4激光器的强度噪声[J]. 中国激光, 2001, 28(3): 197-200.

【32】C C Harb, T C Ralph, E H Huntington, et al.. Intensity-noise dependence of NdYAG lasers on their diode-laser pump source[J]. J Opt Soc Am B, 1997, 14(11): 2936-2945.

【33】Zhang Jing, Zhang Kuanshou, Wang Runlin, et al.. All-solid-state Nd:YVO4 ring laser of single-frequency operation[J]. Chinese J Lasers, 2000, 27(8): 694-696.
张靖, 张宽收, 王润林, 等. 全固化单频Nd:YVO4环形激光器[J]. 中国激光, 2000, 27(8): 694-696.

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF