首页 > 论文 > 红外与毫米波学报 > 33卷 > 2期(pp:177-182)

基于初始尺度变换的SIFT匹配算法

SIFT matching method based on base scale transformation

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

直接使用检测到的SIFT(Scale-Invariant Feature Transformation)特征点进行特征点匹配,匹配性能仍然有待提升.提出了改进的SIFT匹配算法,利用匹配特征点的尺度比直方图,估计出近似的图像尺度比k,然后将空间分辨率较高的图像初始尺度增大到k倍,再次提取特征点进行匹配.实验结果表明,相比于其它用尺度约束条件提升性能的匹配算法,基于初始尺度变化的SIFT匹配算法在处理结构型图像时性能得到了很大的提升.

Abstract

Performance of the matching method which directly using SIFT feature points needs to be improved. This paper proposed an improved SIFT matching method which firstly uses the scale ratio histogram of the matched feature points to estimate the approximate scale ratio k of the image pair, then increases the base scale up to k times and extracts featur points points again for the higher resolution image, finally performs feature matching again to obtain the result. The experiment results show that, compared with the existing improved SIFT matching methods with scale difference, performance is improved significantly for structured image pairs.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TP391.4

DOI:10.3724/sp.j.1010.2014.00177

基金项目:教育部支撑计划项目(625010107)

收稿日期:2012-10-09

修改稿日期:2013-09-15

网络出版日期:--

作者单位    点击查看

张静:华中科技大学 图像识别与人工智能研究所 多谱信息处理国家重点实验室,湖北 武汉430074
桑红石:华中科技大学 图像识别与人工智能研究所 多谱信息处理国家重点实验室,湖北 武汉430074

联系人作者:张静(jingzh8189@gmail.com)

备注:张静(1981-),女,湖北枣阳人,博士研究生,主要研究领域为计算机视觉前端算法研究及ASIC并行实现等.

【1】Lowe D G. Distinctive image features from scale-invariant keypoints[J], International Journal of Computer Vision, 2004,60(2):91-110.

【2】Mikolajczyk K, Schmid C. A performance evaluation of local descriptors[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(10): 1615-1630.

【3】Torr P H S, Zisserman A. MLESAC: a new robust estimator with application to estimating image geometry[J]. Computer Vision and Image Understanding, 2000, 78(1):138-156.

【4】Fischler M A, Bolles R C. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography[J]. Communications of the ACM, 1981,24(6):381-395.

【5】Alhwarin F, Wang C, Ristic-Durrant D, et al. A.: Improved SIFT-features matching for object recognition[C].In Visions of Computer Science-BCS International Academic Conf., Imperial College, London, UK, September, 2008.

【6】Yi Z, Zhiguo C, Yang X. Multi-spectral remote image registration based on SIFT[J]. Electronics Letters, 2008, 44(2): 107-108.

【7】Bastanlar Y, Temizel A, Yardimci Y. Improved SIFT matching for image pairs with scale difference[J]. Electronics Letters, 2010, 46(5): 346-U4867.

【8】Lindeberg T. Scale-space theory: A basic tool for analysing structures at different scales[J]. Journal of Applied Statistics, 1994. 2(21): 224-270.

【9】Lindeberg T. Feature detection with automatic scale selection[J]. International Journal of Computer Vision, 1998. 30(2): 79-116.

【10】Mikolajczyk K. Affine Covariant Features [EB-OL],http://www.robots.ox.ac.uk/~vgg/research/affine/

引用该论文

ZHANG Jing,SANG Hong-Shi. SIFT matching method based on base scale transformation[J]. Journal of Infrared and Millimeter Waves, 2014, 33(2): 177-182

张静,桑红石. 基于初始尺度变换的SIFT匹配算法[J]. 红外与毫米波学报, 2014, 33(2): 177-182

被引情况

【1】赵爱罡,王宏力,杨小冈,陆敬辉,王建永,崔祥祥. 一种仿射不变的前视红外目标识别方法. 激光与光电子学进展, 2015, 52(7): 71501--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF