Chinese Optics Letters, 2014, 12 (5): 053101, Published Online: May. 6, 2014   

Optimization of thickness uniformity of coatings on spherical substrates using shadow masks in a planetary rotation system Download: 1038次

Author Affiliations
Abstract
A model is developed to improve thickness uniformity of coatings on spherical substrates rapidly and automatically using fixed shadow masks in a planetary rotation system. The coating thickness is accurately represented by a function composed of basic thickness, self-shadow effect, and shadow mask function. A type of mask with parabolic contours is proposed, and the thickness uniformity of coatings on spherical substrates can be improved in a large range of ratios of clear aperture (CA) to radius of curvature (RoC) by optimizing shadow masks using a numerical optimization algorithm. Theoretically, the thickness uniformity improves to more than 97.5% of CA/RoC from –1.9 to 1.9. Experimentally, the thickness uniformities of coatings on a convex spherical substrate (CA/RoC = 1.53) and on a concave spherical substrate (CA/RoC=–1.65) improve to be better than 98.5% after corrected by the shadow masks.

Jian Sun, Weili Zhang, Kui Yi, Jianda Shao. Optimization of thickness uniformity of coatings on spherical substrates using shadow masks in a planetary rotation system[J]. Chinese Optics Letters, 2014, 12(5): 053101.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!