发光学报, 2014, 35 (4): 399, 网络出版: 2014-05-08   

通过交替生长气氛调控N掺杂ZnO薄膜电学特性

p-type Doping of ZnO∶N Thin Fims by Alternating The Growth Atmosphere
作者单位
1 发光学及应用国家重点实验室 中国科学院长春光学精密机械与物理研究所, 吉林 长春130033
2 中国科学院大学, 北京 100049
3 吉林大学 物理学院, 吉林 长春130023
摘要
使用分子束外延方法在c面蓝宝石衬底上生长了系列氮掺杂ZnO薄膜样品。在连续的富锌气氛环境中生长的样品, 由于存在大量的施主缺陷, 呈现n型电导。为了抑制施主缺陷带来的补偿效应, 在生长过程中, 通过周期性补充氧气, 形成周期性的富氧气氛, 缓解了氮掺杂浓度和施主缺陷浓度之间的矛盾。光致发光测量表明, 通过交替生长气氛, 氧空位和锌间隙等缺陷在薄膜中得到了显著抑制。通过交替生长气氛生长的外延薄膜的结晶质量也有所提高。样品显示出重复性较高的p型电导, 载流子浓度可达到1016 cm-3。周期性补氧调节生长气氛的生长方式是一种有效实现p型掺杂ZnO的方法。
Abstract
A series of nitrogen-doped zinc oxide (ZnO∶N) thin films were grown on c-plane sapphire substrate by plasma-assisted molecular beam epitaxy. Due to the large number of donor defects, the samples grown in the continuous zinc-rich atmosphere showed n-type conductivity. In order to suppress the compensation effect caused by donor defects, by periodically supplying oxygen during the growth and then alternating the growth atmosphere in the growth process, the conflict between nitrogen doping level and intrinsic defects was relaxed partly. Compared to the case without supplying oxygen, the crystal quality of the thin films was improved. And the photoluminescence measurements showed that the oxygen vacancy and the zinc interstitial defects in the thin films were suppressed significantly. The samples showed a high repeatability of p-type conductivity. The carrier concentration of the samples grown by alternating the growth atmosphere can reach 1016 cm-3. This may be an effective method to realize the p-type doped ZnO.

赵鹏程, 张振中, 姚斌, 李炳辉, 王双鹏, 姜明明, 赵东旭, 单崇新, 刘雷, 申德振. 通过交替生长气氛调控N掺杂ZnO薄膜电学特性[J]. 发光学报, 2014, 35(4): 399. ZHAO Peng-cheng, ZHANG Zhen-zhong, YAO Bin, LI Bing-hui, WANG Shuang-peng, JIANG Ming-ming, ZHAO Dong-xu, SHAN Chong-xin, LIU Lei, SHEN De-zhen. p-type Doping of ZnO∶N Thin Fims by Alternating The Growth Atmosphere[J]. Chinese Journal of Luminescence, 2014, 35(4): 399.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!