中国激光, 2014, 41 (s1): s115004, 网络出版: 2014-07-03  

气泡散射型微型光谱仪的设计与仿真研究

Design and Simulation of Bubble Scattering Micro-Spectrometer
作者单位
1 南京邮电大学材料科学与工程学院江苏省有机电子与信息显示重点实验室, 江苏 南京 210023
2 南京工业大学先进材料研究院, 江苏 南京 210009
3 南京大学固体微结构物理国家重点实验室, 江苏 南京 210093
摘要
为克服传统光谱仪普遍存在的体积较大、分辨率不高、光谱测量波段窄、对振动敏感、价格昂贵等不足。根据光散射原理,提出了一种由不同大小气泡构成散射介质的新型光谱仪,并对光谱复原过程进行仿真研究。光谱复原时,待测光首先照射到基底表面的气泡涂层。由于不同波长的光照射在不同大小气泡后在各散射角有不同的散射光强分布,因此置于气泡后方的像素元阵列可以测量到不同的散射光强。所得数据可代入到一个线性方程组,采用Tikhonov正则化方法解此方程组即可得到复原后的光谱图形。仿真结果表明:所得的复原光谱图形与待测光的入射光谱图形基本吻合;光谱仪的光谱测量范围至少覆盖300~1100 nm的波段;光谱测量的波长分辨率接近皮米量级。
Abstract
Traditional spectrometers commonly suffer disadvantages of bulky size, low resolution, narrow spectral range, vibration sensibility and high price. In order to overcome the limitations of traditional devices, a novel micro-spectrometer based on optical scattering theory is proposed and demonstrated by using finite difference time domain (FDTD) simulations. The design contains a series of bubbles with different sizes, which are used to scatter the incident beams. As lights with different wavelengths have different scattering intensity anglar distributions, the pixels after the bubbles can obtain different data which can be substituted into a linear system. The reconstructed spectrum can be obtained by solving the linear system with the Tikhonov regularization method. Simulation results show that the reconstructed spectrum and the incident spectrum are basically coincident. The spectrometer can at least realize a very wide measurement range of 300~1100 nm. Furthermore, the spectrometer can be anticipated to reconstruct the input spectrum with minimum resolutions at picometer order.

杨涛, 许超, 周馨慧, 李兴鳌, 韦玮, 黄维, 秦亦强, 朱永元. 气泡散射型微型光谱仪的设计与仿真研究[J]. 中国激光, 2014, 41(s1): s115004. Yang Tao, Xu Chao, Zhou Xinhui, Li Xing′ao, Wei Wei, Huang Wei, Qin Yiqiang, Zhu Yongyuan. Design and Simulation of Bubble Scattering Micro-Spectrometer[J]. Chinese Journal of Lasers, 2014, 41(s1): s115004.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!