首页 > 论文 > 光学学报 > 34卷 > 6期(pp:617001--1)

基于变量分离近似稀疏重构和简化球谐近似的生物发光断层成像

Bioluminescence Tomography Reconstruction Based on Simplified Spherical Harmonics Approximation Model and Sparse Reconstruction by Separable Approximation

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

生物发光断层成像(BLT)是一种非常有效的光学分子成像方式,在医学预临床研究中的有着广泛的研究。然而,BLT的核心问题即光源重建仍然存在着巨大的挑战:光在生物组织中的传输模型是否精确与重建问题不适定性都使得光源位置与密度的重建变得十分困难。为了准确高效地实现光源重建,在光传输模型的选择上,通过将扩散近似模型和高阶简化球谐近似模型(SPN)的结果与蒙特卡罗金标准进行比较,结果表明阶次(N)为3时的SP3模型描述光子在生物体的传输时能够最佳地兼顾精度和速度。基于SP3传输模型,结合光源在生物体内稀疏分布的特征,采用变量分离近似稀疏重构(SpaRSA)的方法来解决BLT的重建问题。为了验证提出方法的有效性,通过将数字鼠仿真和真实小鼠实验与典型的l1_ls方法对比表明在SP3模型下SpaRSA算法可行。

Abstract

Bioluminescence tomography (BLT) is a promising optical imaging technique that offers an important role in pre-clinical medicine research. However, the core issue of BLT, source reconstruction is still a very challenging ill-posed inverse problem. To overcome the ill-posedness of reconstruciton and obtain accurate quantitative reconstrucitons remains a challenge. For unique and quantitative reconstructions of the internal bioluminescent source, diffusion approximation (DA) and simplified spherical harmonics approximation (SPN) with the Monte Carlo (MC) are compared. The results show that the SP3 model which can balance accuracy and speed is the best model in describing the transmission of photons in the organism. Binding the characteristics which source is distributed in vivo sparsely, a reconstruction using sparse reconstruction by separable approximation (SpaRSA) algorithm is performed for BLT based on SPN forward model. In order to verify the validity of the proposed method, in the digital mouse simulation and real mouse experiment,compared with typical l1_ls algorithm our method has a better performance.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TP391;Q632

DOI:10.3788/aos201434.0617001

所属栏目:医用光学与生物光学

责任编辑:韩峰  信息反馈

基金项目:国家自然科学基金(61372046)、中国博士后科学基金(2012T50814)、陕西省科技计划资助项目(2012 KJXX-29,2013K12-20-12)、西安科技计划资助[CXY1348(2)]、西北大学研究生创新项目(YZZ13108)

收稿日期:2013-12-12

修改稿日期:2014-01-17

网络出版日期:--

作者单位    点击查看

金晨:西北大学信息科学与技术学院, 陕西 西安 710127
郭红波:西北大学信息科学与技术学院, 陕西 西安 710127
侯榆青:西北大学信息科学与技术学院, 陕西 西安 710127
贺小伟:西北大学信息科学与技术学院, 陕西 西安 710127

联系人作者:金晨(jinvenusian@gmail.com)

备注:金晨(1991—),女,硕士研究生,主要从事医学图像处理方面的研究。

【1】WCong, G Wang, D Kumar, et al.. Practical reconstruction method for bioluminescence tomography [J]. Opt Express, 2005, 13(18): 6756-6771.

【2】Margallo-Balbas, P J French. Shape based Monte Carlo code for light transport in complex heterogeneous tissues [J]. Opt Express, 2007, 15(21): 14086-14098.

【3】G Wang, Y Li, M Jiang. Uniqueness theorems in bioluminescence tomography [J]. Medical Physics, 2004, 31(8): 2289-2299.

【4】X Gu, Q Zhang, L Larcom, et al.. Three-dimensional bioluminescence tomography with model-based reconstruction [J]. Opti Express, 2004, 12(17): 3996-4000.

【5】A D Klose, E W Larsen. Light transport in biological tissue based on the simplified spherical harmonics equations [J]. Comput Phys, 2006, 220(1): 441-470.

【6】J Tian, K Liu, Y Lu, et al.. Evaluation of the simplified spherical harmonics approximation in bioluminescence tomography through heterogeneous mouse models [J]. Opt Express, 2010, 18(20): 20988-21002.

【7】Y Lu, H B Machado, Q Bao, et al.. In vivo mouse bioluminescence tomography with radionuclide based imaging validation [J]. Mol Imag Biol, 2010, 13(1): 53-58.

【8】D Marco. Multigrid for image deblurring with Tikhonov regularization [J]. Numer Linear Algebra Appl, 2005, 12(8): 715-729.

【9】X He, G Geng, Z Zhang, et al.. Bioluminescence tomography with structural and sparse a priori information [C]. IEEE, 2011, 1: 170-174.

【10】Stephen J Wright, Robert D Nowak. Sparse reconstruction by separable approximation [J]. IEEE Transactions on Signal Prosessing, 2009, 57(7): 2479-2491.

【11】Wu Linhui, Zhao Huijuan, Yi Xi, et al.. Pilot investigation into shape-based diffuse optical tomography methodology with spherical harmonics parameterization [J]. Acta Optica Sinica, 2013, 33(6): 0617002.
武林会, 赵会娟, 易茜, 等. 基于球谐函数参数化描述的形状扩散光学层析成像方法[J]. 光学学报, 2013, 33(6): 0617002.

【12】Ma Wenjuan, Gao Feng, Zhang Wei, et al.. Image reconstruction method of time-domain fluorescence diffuse optical tomography based on the third-order simplified spherical harmonics approximation to radiative transfer equation [J]. Acta Optica Sinica, 2011, 31(5): 0510001.
马文娟, 高峰, 张伟, 等. 基于辐射传输方程三阶简化球谐近似模型的时域荧光扩散层析图像重建方法[J]. 光学学报, 2011, 31(5): 0510001.

【13】S Chen, D Donoho, M Saunders, et al.. Atomic decomposition by basis pursuit [J]. SIAM J Sci Comput, 1998, 20(1): 33-61.

【14】X He, Y Hou, D Chen, et al.. Sparse regularization-based reconstruction for bioluminescence tomography using a multilevel adaptive finite element method [J]. Journal of Biomedical Imaging, 2011, 2011: 4.

【15】H Li, J Tian, F Zhu, et al.. A mouse optical simulation environment (MOSE) to investigate bioluminescent phenomena in the living mouse with the Monte Carlo method [J]. Acad Radiol, 2004, 11(9): 1029-1038.

【16】Janusz Mroczka, Damian Szczuczyński. Simulation research on improved regularized solution of the inverse problem in spectral extinction measurements [J]. Appl Opt, 2012, 51(11): 1715-1723.

【17】Juan Antonio Quiroga, Julio Cesar Estrada, Manuel Servín, et al.. Regularized least squares phase sampling interferometry [J]. Opt Express, 2011,19(6): 5002-5013.

【18】Junting Liu, Yabin Wang, Xiaochao Qu, et al.. In vivo quantitative bioluminescence tomography using heterogeneous and homogeneous mouse models [J]. Opt Express, 2010, 18(12): 13102-13113.

【19】G Yan, J Tian, S Zhu, et al.. Fast cone-beam CT image reconstruction using GPU hardware [J]. Journal of X-Ray Science Technology, 2008, 16(4): 225-234.

【20】G Alexandrakis, F R Rannou, A F Chatziioannou, et al.. Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study [J]. Physics in Medicine and Biology, 2005, 50(17): 4225-4241.

引用该论文

Jin Chen,Guo Hongbo,Hou Yuqing,He Xiaowei. Bioluminescence Tomography Reconstruction Based on Simplified Spherical Harmonics Approximation Model and Sparse Reconstruction by Separable Approximation[J]. Acta Optica Sinica, 2014, 34(6): 0617001

金晨,郭红波,侯榆青,贺小伟. 基于变量分离近似稀疏重构和简化球谐近似的生物发光断层成像[J]. 光学学报, 2014, 34(6): 0617001

被引情况

【1】刘合娟,侯榆青,贺小伟,蒲鑫. 几种典型迭代算法在生物发光断层成像中的对比研究及评估. 激光与光电子学进展, 2015, 52(8): 81704--1

【2】董芳,侯榆青,余景景,郭红波,贺小伟. 结合区域收缩和贪婪策略的荧光分子断层成像. 激光与光电子学进展, 2016, 53(1): 11701--1

【3】贺小伟,金晨,易黄建,张海波,侯榆青. 基于分割增广拉格朗日收缩的X 射线发光断层成像. 光学学报, 2016, 36(3): 317001--1

【4】张旭,易黄建,侯榆青,张海波,贺小伟. 基于局部保留投影的荧光分子断层成像快速重建. 光学学报, 2016, 36(7): 717001--1

【5】余景景,王海玉,李启越. 结合迭代收缩可行域的单视图多光谱生物发光断层成像. 光学学报, 2016, 36(12): 1211001--1

【6】张海波,耿国华,赵映程,孙 怡,易黄建,侯榆青,贺小伟. 基于非凸L1-2正则子的锥束X射线发光断层成像. 光学学报, 2017, 37(6): 617001--1

【7】侯榆青,曲 璇,张海波,易黄建,贺小伟. 采用快速贝叶斯匹配追踪的单视图X射线发光断层成像. 光学 精密工程, 2017, 25(5): 1159-1170

【8】侯榆青,薛花,曹欣,张海波,曲璇,贺小伟. 基于稀疏贝叶斯学习的单视图增强型切伦科夫发光断层成像. 光学学报, 2017, 37(12): 1217001--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF