首页 > 论文 > 激光与光电子学进展 > 51卷 > 6期(pp:61405--1)

数值优化3~5 μm中红外ZBLAN光纤拉曼激光器的研究

Numerical Optimization of 3~5 μm Mid-Infrared ZBLAN Fiber Raman Lasers

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

3~5 μm 中红外激光在国防、医疗、自由空间光通信及材料加工等领域具有重要的应用价值。本文提出利用发展较成熟的2.7~2.9 μm 掺Er 激光作为拉曼抽运源,ZBLAN 光纤作为拉曼增益介质,为获得激射波长灵活、结构紧凑的3~5 μm 中红外激光提供一种可行方法。依据光纤拉曼激光器的非线性耦合方程组,数值分析并优化设计了3~5 μm 中红外ZBLAN 光纤一级/二级拉曼激光器。主要研究了ZBLAN 光纤长度和输出镜反射率等参数对拉曼激光阈值及输出功率的影响。数值结果表明:1) 拉曼阈值随着输出镜反射率的增大而明显下降,且存在最优的ZBLAN光纤长度使一级拉曼阈值最低(4.15 W);2) 为获得最高拉曼激光输出功率,最优输出镜反射率分别为84%~98%(一级)和42%~60%(二级),最优ZBLAN 光纤长度分别为6.7~8.9 m(一级)和1.5~2.4 m(二级),最优斜率效率分别高达72.36%(一级)和34.06%(二级)。研究工作在一定程度上可为实验研究此类中红外拉曼激光器提供理论指导。

Abstract

3~5 μm mid-infrared lasers have attracted much attentions due to their wide applications in defences, medicine, free-space optical communication and materials processing. A new scheme for obtaining a 3~5 μm flexible-wavelength, compact mid-infrared Raman fiber laser is proposed, using a 2.7~2.9 μm Erdoped fiber laser as Raman pump source and a ZBLAN fluoride fiber as Raman gain medium. Based on the nonlinear coupling equations of Raman fiber lasers, the 3~5 μm mid-infrared ZBLAN fiber 1st/2nd-order Raman lasers are numerically analyzed and optimized. The theoretical optimization is mainly focused on the effects of ZBLAN fiber length and output-mirror reflectivity on the Raman laser threshold and output power. The numerical results show: 1) the Raman laser threshold significantly reduces with the increase of the outputmirror reflectivity, and there always exists the optimized ZBLAN fiber length for the lowest Raman threshold (4.15 W); 2) in order to obtain the high-power Raman laser output, the optimized reflectivities of output mirror are 84~98% (1st-order) and 42~60% (2nd-order), the optimized ZBLAN fiber lengths are 6.7~8.9 m(1st-order) and 1.5~2.4 m (2nd-order), respectively. The optimized slope conversion efficiencies can be as high as 72.36% (1st-order) and 34.06% (2nd-order). These results could provide a theoretical guidance for such mid-infrared fiber Raman lasers.

广告组5 - 光束分析仪
补充资料

中图分类号:O436

DOI:10.3788/lop51.061405

所属栏目:激光器与激光光学

基金项目:国家自然科学基金(61107038)、厦门大学大学生创新创业实训项目

收稿日期:2014-01-24

修改稿日期:2014-02-24

网络出版日期:2014-05-23

作者单位    点击查看

王莹:厦门大学信息科学与技术学院电子工程系, 福建 厦门 361005
罗正钱:厦门大学信息科学与技术学院电子工程系, 福建 厦门 361005
熊凤福:厦门大学信息科学与技术学院电子工程系, 福建 厦门 361005
蔡志平:厦门大学信息科学与技术学院电子工程系, 福建 厦门 361005
许惠英:厦门大学信息科学与技术学院电子工程系, 福建 厦门 361005

联系人作者:王莹(wangying_1030@163.com)

备注:王莹(1988—),女,硕士研究生,主要从事拉曼光纤激光器方面的研究。

【1】Digonnet M J F. Rare-Earth-Doped Fiber Lasers and Amplifiers[M]. Second Edition, Revised and Expanded. New York : Marcel Dekker, 2001.

【2】Qi Wei, Liu Peng, Lu Helin, et al.. 1270 nm hybrid cascaded phosphosilicate fiber Raman laser[J]. Chinese J lasers, 2013, 40(3): 0302008.
漆伟, 刘鹏, 卢和林, 等. 1270 nm 混合级联掺磷光纤拉曼激光器[J]. 中国激光, 2013, 40(3): 0302008.

【3】Huang Chaohong, Wei Dong, Lin Jiali, et al.. High power 1.48 μm home-made phosphosilicate fiber cascaded Raman laser[J]. Chinese J Lasers, 2008, 35(s2): 33-36.
黄朝红, 魏栋, 林佳丽, 等. 高功率1.48 μm 国产掺磷光纤级联拉曼激光器[J]. 中国激光, 2008, 35(s2): 33-36.

【4】Qin Zujun, Zhou Xiaojun, Wu Haocheng, et al.. Design of multi-wavelength cascaded Raman fiber lasers[J]. Acta Optica Sinica, 2009, 29(1): 244-248.
秦祖军, 周晓军, 伍浩成, 等. 多波长级联拉曼光纤激光器的设计[J]. 光学学报, 2009, 29(1): 244-248.

【5】Luo Z Q, Ye C C, Fu H Y, et al.. Raman fiber laser harmonically mode-locked by exploiting the intermodal beating of CW multimode pump source[J]. Opt Express, 2012, 20(18): 19905-19911.

【6】IPG Photonics. Mid-infrared lasers[OL]. http://www.ipgphotonics.com. 2013-9-2.

【7】Ehrenreich T, Leveille R, Majid I, et al.. 1-kW, all-glass Tm: fiber laser[C]. SPIE, 2010, 7580: 758016.

【8】Bian J, Nie J, Sun X. Mid-infrared laser technology and its progress[J]. Infrared and Laser Engineering, 2006, 35(S3): 188-193.

【9】Meng Wang, Lixia Yi, Liyan Zhang, et al.. 2 μm fluorescence and Raman spectra in high and low Al(PO3)3 content fluorophosphate glasses doped with Er-Tm-Ho[J]. Chin Opt Lett, 2009, 7(11): 1035-1037.

【10】H Tobben. Room temperature cw fibre laser at 3.5 μm in Er3+-doped ZBLAN glass[J]. Electron Lett, 1992, 28(14): 1361-1362.

【11】Fortin V, Bernier M, Faucher D, et al.. 3.7 W fluoride glass Raman fiber laser operating at 2231 nm[J]. Opt Express, 2012, 20(17): 19412-19419.

【12】Fortin V, Bernier M, Carrier J, et al.. Fluoride glass Raman fiber laser at 2185 nm[J]. Opt Lett, 2011, 36(21): 4152-4154.

【13】Bernier M, Fortin V, Caron N, et al.. Mid-infrared chalcogenide glass Raman fiber laser[J]. Opt Lett, 2013, 38(2): 127-129.

【14】Jackson S. High-power and highly efficient diode-cladding-pumped holmium-doped fluoride fiber laser operating at 2.94 μm [J]. Opt Lett, 2009, 34(15): 2327-2329.

【15】Jackson S. Continuous wave 2.9 μm dysprosium-doped fluoride fiber laser[J]. Appl Phys Lett, 2003, 83(7): 1316-1318.

【16】Li J, Hudson D D, Jackson S D, et al.. High-power diode-pumped fiber laser operating at 3 μm [J]. Opt Lett, 2011, 36(18): 3642-3644.

【17】Jackson S, Sánchez G A. Chalcogenide glass Raman fiber laser[J]. Appl Phys Lett, 2006, 88(22): 221106.

【18】Fiber Labs. ZBLAN fiber for NIR/IR spectroscopy[OL]. http://fiberlabs-inc.com/fiber_technology.htm. 2013-9-2.

【19】Tokita S, Murakami M, Shimizu S, et al.. Liquid-cooled 24 W mid-infrared Er:ZBLAN fiber laser[J]. Opt Lett, 2009, 34(20): 3062-3064.

【20】Tokita S, Hirokane M, Murakami M, et al.. Stable 10 W Er:ZBLAN fiber laser operating at 2.71~2.88 μm [J]. Opt Lett, 2010, 35(23): 3943-3945.

【21】Tokita S, Murakami M, Shimizu S, et al.. 12 W Q-switched Er:ZBLAN fiber laser at 2.8 μm [J]. Opt Lett, 2011, 36(15): 2812-2814.

【22】Wei C, Zhu X, Norwood R, et al.. Passively Q-switched 2.8 μm nanosecond fiber laser[J]. IEEE Photon Technol Lett, 2012, 24(19): 1741-1744.

【23】Li Jianfeng, Ou Zhonghua, Dai Zhiyong, et al.. Theoretical analysis and design of mid-infrared ZBLAN fiber Raman laser [J]. Infrared and Laser Engineering, 2011, 40(8): 1432-1437.
李剑峰, 欧中华, 代志勇, 等. 中红外ZBLAN 光纤拉曼激光器的理论分析与设计[J]. 红外与激光工程, 2011, 40(8): 1432-1437.

【24】Luo H, Li J F. Numerical modeling and optimization of mid-infrared fluoride glass Raman fiber lasers pumped by Tm3+-doped fiber laser[J]. IEEE Photonics Journal, 2011, 5(2): 2700211.

【25】Qin G, Huang S, Feng H. Power scaling of Tm3+ doped ZBLAN blue upconversion fiber lasers modeling and experiments [J]. J Appl Phys, 2006, B(82): 65-70.

【26】M Rini, I Cristiani, V Degiorgio. Numerical modeling and optimization of cascaded CW raman fiber lasers[J]. IEEE Quantum Electron, 2000, 36(10): 1117-1122.

【27】Huang Jiafu, Huang Chaohong, Cai Zhiping, et al.. Numerical simulation and optimization for the bilateral pumping Pdoped Raman fiber laser[J]. Journal of Xiamen University, 2008, 47(2): 164-168.
黄嘉福, 黄朝红, 蔡志平, 等. 双端抽运掺磷光纤拉曼激光器的数值模拟及优化[J]. 厦门大学学报, 2008, 47(2): 164-168.

引用该论文

Wang Ying,Luo Zhengqian,Xiong Fengfu,Cai Zhiping,Xu Huiying. Numerical Optimization of 3~5 μm Mid-Infrared ZBLAN Fiber Raman Lasers[J]. Laser & Optoelectronics Progress, 2014, 51(6): 061405

王莹,罗正钱,熊凤福,蔡志平,许惠英. 数值优化3~5 μm中红外ZBLAN光纤拉曼激光器的研究[J]. 激光与光电子学进展, 2014, 51(6): 061405

被引情况

【1】彭雅珮,姜本学,范金太,袁新强,张龙. 激光二极管直接抽运中红外固体激光材料综述. 激光与光电子学进展, 2015, 52(2): 20001--1

【2】徐航,戴世勋,张培晴,李杏,吴越豪,吴丽华,刘自军,王训四,徐铁峰,聂秋华. 硫系拉曼光纤激光器研究进展. 激光与光电子学进展, 2016, 53(3): 30004--1

【3】孙骁,韩隆,王克强. 直接抽运中红外固体激光器研究进展. 激光与光电子学进展, 2017, 54(5): 50007--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF