光子学报, 2014, 43 (8): 0819002, 网络出版: 2014-09-01   

基于自发辐射相干控制的电磁感应透明诱导无反转光放大效应

The Transformation from Electromagnetically Induced Transparency to Lasing Without Population Inversion Based on Spontaneously Generated Coherence
作者单位
1 河北大学 物理科学与技术学院, 河北 保定 071002
2 中国科学院半导体研究所, 北京 100038
3 河北北方学院 物理系, 河北 张家口 075000
摘要
建立微波驱动基态精细结构跃迁的Λ型三能级系统, 研究基于自发辐射相干控制的电磁感应透明诱导无反转光放大效应.微波场作用于基态精细结构能级之间, 产生3个透明窗口, 利用适当角度的自发辐射相干效应与电磁感应透明耦合, 实现透明向光放大的转化.结果表明, 透明转化为光放大时, 激发态与基态能级之间以及两个基态能级之间均不出现粒子数反转, 但在产生光放大的过程中必须经历两个基态能级出现粒子数反转的状态.调节微波场的频率失谐量可以改变基态能级上的粒子数分布, 有利于无反转光放大的产生.
Abstract
The transformation from electromagnetically induced transparency to amplification without inversion based on spontaneously generated coherence was studied by proposing a lambda type three-level system. Three transparency windows are observed when two ground state hyperfine levels are driven by a microwave field. The transparency shifts into amplification by using the coupling of electromagnetically induced transparency and spontaneously generated coherence with appropriate angle. The results show that there is no population inversion between the ground state and the excited state level and no population inversion between two ground state hyperfine levels when amplification is observed, but the system must go through population inversion of two ground state levels in the process of generating amplification. The populations of two ground state levels can be controlled though the adjustment of the frequency detuning of the microwave field to facilitate the generation of amplification.

李晓莉, 孟旭东, 吴艳华, 尚雅轩, 张连水. 基于自发辐射相干控制的电磁感应透明诱导无反转光放大效应[J]. 光子学报, 2014, 43(8): 0819002. LI Xiao-li, MENG Xu-dong, WU Yan-hua, SHANG Ya-xuan, ZHANG Lian-shui. The Transformation from Electromagnetically Induced Transparency to Lasing Without Population Inversion Based on Spontaneously Generated Coherence[J]. ACTA PHOTONICA SINICA, 2014, 43(8): 0819002.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!