首页 > 论文 > 中国激光 > 41卷 > 11期(pp:1102001--1)

结合激光功率和光斑位置的多帧动态干扰效果评估

Dynamic Assessment of Laser-Dazzling Effects Based on the Laser Power and Spot Position of Multi-Frame Images

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

激光主动成像系统通常用于重要区域监视和危险目标识别,当该系统受到敌方激光干扰时,其成像质量将会下降。由于目标、成像系统和干扰源的相对位置,以及干扰源的干扰功率处于时刻变化中,导致不同时刻的干扰效果不尽相同,如何衡量一段时间内激光对成像系统的干扰效果成为一个难题。提出了一种基于连续多帧图像动态特征变化的无参考激光干扰评估算法,在图像目标区域内分析单帧干扰图像中特征点的匹配准确率和空间变化率以及多帧图像特征点变化的准确性、空间性、结构性差异、频率和显著性特征,最终得到归一化的评估指标。利用激光主动成像识别系统对设定目标进行照明成像识别实验,采集不同干扰功率和干扰方位的激光干扰图像。基于提出的特征点动态性算法对获得的连续多帧激光干扰图像进行评估,结果表明该算法能够准确评价一段持续干扰过程中不同功率、方位的激光干扰效果,客观反映光斑遮盖下自动目标识别算法的失效程度。

Abstract

Laser active imaging systems are usually used in important region surveillance and dangerous target identification. However, the imaging system is easy to be disturbed and this leads to the distortion of the images. The positions of the target, imaging system, interference and the laser power change momentarily, so the dazzling effect is different in every frame. Therefore, how to evaluate the influence of the laser on imaging systems must be better understood. A new no-reference image quality assessment algorithm based on the dynamic features of consistent multi-frame images is proposed, which is called feature-point dynamic (FPD). The feature-point matching correlation and area diversification of one frame are calculated in the target region. The difference of correlation, area distribution, structure, frequency and salience of multi-frame images are also compared in the target region. The normalized results are obtained via product of these factors above. The luminance imaging experiment is performed for the targets by utilizing the laser active imaging system. The disturbed images of different disturbing powers and different spot positions are obtained. The proposed FPD algorithm is used to evaluate the laser-dazzling images, and the results show that the FPD gives a more reasonable evaluation for multi-frame laser-dazzling images in the period of time. The evaluation results reflect the invalidation of the target identification algorithm objectively.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN977

DOI:10.3788/cjl201441.1102001

所属栏目:激光物理

基金项目:国家重点实验室自主基础研究(SKLLIM1203-01)

收稿日期:2014-04-24

修改稿日期:2014-06-04

网络出版日期:--

作者单位    点击查看

钱方:中国科学院长春光学精密机械与物理研究所激光与物质相互作用国家重点实验室, 吉林 长春 130033中国科学院大学, 北京 100049
孙涛:中国科学院长春光学精密机械与物理研究所激光与物质相互作用国家重点实验室, 吉林 长春 130033
郭劲:中国科学院长春光学精密机械与物理研究所激光与物质相互作用国家重点实验室, 吉林 长春 130033
王挺峰:中国科学院长春光学精密机械与物理研究所激光与物质相互作用国家重点实验室, 吉林 长春 130033

联系人作者:钱方(qfmail@sina.cn)

备注:钱方(1987—),女,博士研究生,主要从事图像处理方面的研究。

【1】Z Wang, H R Sheikh, A C Bovik. No-reference perceptual quality assessment of JPEG compressed images[C]. IEEE Image Processing International Conference, 2002, 1(1): 477-480.

【2】S Liu, A C Bovik. Efficient DCT-domain blind measurement and reduction of blocking artifacts[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2002, 12(12): 1139-1149.

【3】Sang Qingbing, Su Yuanyuan, Li Chaofeng, et al.. No-reference blur image quality assessment based on gradient similarity[J]. Journal of Optoelectronics·Laser, 2013, 24(3): 573-577.
桑庆兵, 苏媛媛, 李朝锋, 等. 基于梯度结构相似度的无参考模糊图像质量评价[J]. 光电子·激光, 2013, 24(3): 573-577.

【4】C Li, A C Bovik, X Wu. Blind image quality assessment using a general regression neural network[J]. IEEE Transactions on Neural Networks, 2011, 22(5): 793-799.

【5】C Schmid, R Mohr, C Bauckhage. Evaluation of interest point detectors[J]. International Journal of Computer Vision, 2000, 37(2): 151-172.

【6】E Rosten. High Performance Rigid Body Tracking[D]. Cambridge: University of Cambridge, 2006.

【7】L H Yuan, L Fu, Y Yang, et al. Analysis of texture feature extracted by gray level co-occurrence matrix[J]. Journal of Computer Applications, 2009, 29(4): 1018-1021.

【8】Liu Guixi, Liu Dongmei, Liu Fengpeng, et al.. Robust image registration algorithm based on feature points matching[J]. Acta Optica Sinica, 2008, 28(3): 454-55.
刘贵喜, 刘冬梅, 刘凤鹏, 等. 一种稳健的特征点配准算法[J]. 光学学报, 2008, 28(3): 454-455.

【9】Tang Yonghe, Lu Huanzhang. Fast local feature description algorithm based on gray value differential invariants[J]. Optics and Precision Engineering, 2012, 20(2): 447-454.
唐永鹤, 卢焕章. 基于灰度差分不变量的快速局部特征描述算法[J]. 光学 精密工程, 2012, 20(2): 447-454.

【10】Mi Zengzhen, Xie Zhijiang, Chen Tao, et al.. Key technology of image enhancement and edge extraction for heavy rail[J]. Optics and Precision Engineering, 2012, 20(7): 1645~1652.
米曾真, 谢志江, 陈涛, 等. 重轨图像增强与边缘提取的关键技术[J]. 光学 精密工程, 2012, 20(7): 1645-1652.

【11】Han Xizhen, Zhao Jian. Enhancement of image texture and contrast combined with partial differential equation[J]. Optics and Precision Engineering, 2012, 20(6): 1382-1388.
韩希珍, 赵建. 结合偏微分方程增强图像纹理及对比度[J].光学 精密工程, 2012, 20(6): 1382-1388.

【12】X Xu, X Q Sun, L Shao. Simulation of laser jamming and its influence on CCD imaging performance[C]. SPIE, 2010, 7850: 78501W.

【13】M A Schleijpen, A Dimmeler, B Eberle, et al.. Laser dazzling of focal plane array cameras[C]. SPIE, 2007, 6738: 67380O.

【14】A Dureuc, P Bourdon, O Vasseur. Laser-dazzling effects on TV-cameras: analysis of dazzling effects and experimental parameters weight assessment[C]. SPIE, 2005, 6738: 67380L.

【15】A Dureuc, O Vasseur, P Bourdon. Assessment of laser-dazzling effects on TV-cameras by means of pattern recognition algorithms[C]. SPIE, 2007, 6738: 67380J.

【16】Zhang Shaodi, Sun Honghai. High precision method of long-ranged laser spot position measurement[J]. Chinese J Laser, 2012, 39(7): 0708003.
张少迪, 孙宏海. 远距离激光光斑位置高精度测量方法[J]. 中国激光, 2012, 39(7): 0708003.

【17】Qian Fang, Guo Jin, Sun Tao, et al.. Assessment of laser-dazzling effects based on weighted wavelet transforms[J]. Chinese Journal of Liquid Crystals and Displays, 2013, 28(5): 781-787.
钱方, 郭劲, 孙涛, 等. 基于小波加权的激光干扰效果评估[J]. 液晶与显示, 2013, 28(5): 781-787.

引用该论文

Qian Fang,Sun Tao,Guo Jin,Wang Tingfeng. Dynamic Assessment of Laser-Dazzling Effects Based on the Laser Power and Spot Position of Multi-Frame Images[J]. Chinese Journal of Lasers, 2014, 41(11): 1102001

钱方,孙涛,郭劲,王挺峰. 结合激光功率和光斑位置的多帧动态干扰效果评估[J]. 中国激光, 2014, 41(11): 1102001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF