首页 > 论文 > 激光与光电子学进展 > 51卷 > 11期(pp:111601--1)

基于温度场模拟的激光熔覆生物陶瓷涂层工艺参数选择

Laser Cladding Bio-Ceramic Coating Process Parameters Selection Based on Simulation of Temperature Field

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

根据激光熔覆生物陶瓷涂层的特点,选择二维带状热源模型,研究计算了材料物理性能在不同温度下的变化曲线,并建立温度场模型。将实验制备的涂层从涂层外观、显微硬度、涂层与基体的结合强度、涂层物相等方面对比模拟结果与实验结果,从而论证模型的可靠性。根据模拟结果可得:激光功率与扫描速度均会影响熔池深度,且激光功率的影响大于扫描速度;根据模拟的变化趋势分析,选择的激光熔覆的工艺参数为功率P=1700 W,扫描速度V=165 mm/min。模拟预测了不同涂层厚度、工艺参数条件下的熔池深度。

Abstract

Based on the characteristics of laser cladding bio- ceramic coatings, the two- dimensional ribbon heat source is chosen to study and calculate the physical properties of material′s change curves under different temperatures, and the temperature field model is established. The experimental and the simulated results of the prepared coatings are compared in terms of preparation of coatings results in simulative and coating appearance, micro- hardness, bonding strength with substrate and coating phase, which demonstrates the reliability of the model. According to the simulation results, the following conclusion is drawn: both of laser power and scanning speed will affect the depth of molten pool, but the influence of laser power is greater than that of scanning speed. Based on the change trend analysis of simulation, the laser cladding process parameters are P=1700 W, V=165 mm/min. The depth of molten pool under different coating thicknesses and process parameters is simulated and forecasted.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TN249;TB39

DOI:10.3788/lop51.111601

所属栏目:材料

基金项目:国家自然科学基金(50975259,51275471,50375145,51105339)

收稿日期:2014-05-29

修改稿日期:2014-06-09

网络出版日期:2014-09-29

作者单位    点击查看

鲍雨梅:浙江工业大学特种装备制造与先近加工技术教育部/浙江省重点实验室, 浙江 杭州 310014
高海明:浙江工业大学特种装备制造与先近加工技术教育部/浙江省重点实验室, 浙江 杭州 310014
张冬明:浙江工业大学特种装备制造与先近加工技术教育部/浙江省重点实验室, 浙江 杭州 310014
许景顺:浙江工业大学特种装备制造与先近加工技术教育部/浙江省重点实验室, 浙江 杭州 310014
马龙:浙江工业大学特种装备制造与先近加工技术教育部/浙江省重点实验室, 浙江 杭州 310014

联系人作者:鲍雨梅(baoym@zjut.edu.cn)

备注:鲍雨梅(1971—),女,博士,教授,主要从事材料断裂、损伤等失效分析等方面的研究。

【1】Li Lijun. Modern Laser Processing and Its Equipment [M]. Beijing: Beijing Institute of Technology Press, 1993. 74.
李力钧. 现代激光加工及其装备[M]. 北京: 北京理工大学出版社, 1993, 74.

【2】Wang Dongsheng, Yang Youwen, Tian Zongjun, et al.. Process optimization of thick nanostructured ceramic coating by laser multi-layer cladding based on neural network and genetic algorithm [J]. Chinese J Lasers, 2013, 40(9): 0903001.
王东生, 杨友文, 田宗军, 等. 基于神经网络和遗传算法的激光多层熔覆厚纳米陶瓷涂层工艺优化[J]. 中国激光, 2013, 40(9): 0903001.

【3】Ni Libin, Liu Jichang, Wu Yaoting, et al.. Optimization of laser cladding process variables based on neural network and partical swarm optimization algorithms [J]. Chinese J Lasers, 2011, 38(2): 0203003.
倪立斌, 刘继常, 伍耀庭, 等. 基于神经网络和粒子群算法的激光熔覆工艺参数[J]. 中国激光, 2011, 38(2): 0203003.

【4】V Ocelik, U de Oliveira, M de Boer, et al.. Thick Co- based coating on cast iron by side laser cladding: analysis of processing conditions and coating properties [J]. Surface & Coatings Technology, 2007, 201(12): 5875-5883.

【5】Deng Chi, Zhang Yaping, Gao Jiacheng, et al.. Numerical simulation of temperature field for bioceramic coating cladded by laser [J]. Journal of Materials Science & Engineering, 2003, 21(4): 503-506
邓迟, 张亚平, 高家诚, 等. 激光熔覆生物陶瓷涂层温度场的数值模[J]. 材料科学与工程学报, 2003, 21(4): 503-506.

【6】Liu Hao, Yu Gang, He Xiuli, et al.. Three-dimensional numerical simulation of transient temperature field and coating geometry in powder feeding laser cladding [J]. Chinese J Lasers, 2013, 40(12): 1203007.
刘昊, 虞钢, 何秀丽, 等. 送粉式激光熔覆中瞬态温度场与几何形貌的三维数值模拟[J]. 中国激光, 2013, 40(12): 1203007.

【7】Shi Shihong, Wang Chen, Xu Aiqin, et al.. Temperature field numerical simulation of laser cladding based on internal powder feeding through a hollow laser beam [J]. Chinese J Lasers, 2012, 39(3): 0303002.
石世宏, 王晨, 徐爱琴, 等. 基于环形光光内送粉激光熔覆温度场的数值模拟[J]. 中国激光, 2012, 39(3): 0303002.

【8】Zhao Yongqing, Hong Quan, Ge Peng, et al.. Titanium and Titanium Alloy Microstructure Map [M]. Changsha: Central South University Press, 2011.
赵永庆, 洪权, 葛鹏. 钛及钛合金金相图谱[M]. 长沙: 中南大学出版社, 2011.

【9】L Han, F W Liou, K M Phatak. Modeling of laser cladding with powder injection [J]. Metallurgical and Materials Transactions B, 2004, 35B:1140-1150.

【10】Zhang Dongming, Bao Yumei, Gao Haiming, et al.. Simulation on laser cladding temperature field of bioceramic coating [J]. Light Industry Machinery, 2014, 32(2): 77-81.
张冬明, 鲍雨梅, 高海明, 等. 激光熔覆生物陶瓷涂层温度场模拟[J]. 轻工机械, 2014, 32(2): 77-81.

【11】Li Donglin.Numerical Simulation Research on Welding Stress and Deformation [D]. Wuhan: Wuhan University of Technology, 2003.
李冬林. 焊接应力和变形的数值模拟研究[D]. 武汉: 武汉理工大学, 2003.

【12】Yan Yuhe, Zhong Minlin. High Power Laser Processing and Its Application [M]. Tianjin: Tianjin Science & Technology Press, 1994.
闫毓禾, 钟敏霖. 高功率激光加工及其应用[M]. 天津: 天津科学技术出版社, 1994.

【13】Chen Gang, Li Xiangfeng, Zuo Dunwen, et al.. The simulation of temperature field of squashing presetting laser cladding and testing of the model [J]. Applied Laser, 2010, 30(3): 183-188.
陈刚, 黎向锋, 左敦稳, 等. 压片预置式激光熔覆温度场的数值模拟模型及其验证[J]. 应用激光, 2010, 30(3): 183-188.

【14】Tang Di, Wang Jin, Jiang Haitao, et al.. Microstructure and hardness of the hot rolled TC4 alloy under different heat treatment [J]. Heat Treatment of Metals, 2012, 37(3): 28-32.
唐荻, 王进, 江海涛, 等. 热轧态TC4 合金不同热处理后的组织变化及硬度[J]. 金属热处理, 2012, 37(3): 28-32.

引用该论文

Bao Yumei,Gao Haiming,Zhang Dongming,Xu Jingshun,Ma Long. Laser Cladding Bio-Ceramic Coating Process Parameters Selection Based on Simulation of Temperature Field[J]. Laser & Optoelectronics Progress, 2014, 51(11): 111601

鲍雨梅,高海明,张冬明,许景顺,马龙. 基于温度场模拟的激光熔覆生物陶瓷涂层工艺参数选择[J]. 激光与光电子学进展, 2014, 51(11): 111601

被引情况

【1】鲍雨梅,高海明,柴国钟,马龙,徐哲玉. 激光熔覆与等离子喷涂制备FHA涂层及其性能研究. 中国激光, 2015, 42(8): 806003--1

【2】郭卫,李凯凯,柴蓉霞,张丽苹. 激光熔覆304不锈钢稀释效应的数值模拟与实验. 激光与光电子学进展, 2019, 56(5): 51402--1

【3】郭卫,张亚普,柴蓉霞. 单道次激光熔覆304不锈钢数值模拟与实验研究. 激光与光电子学进展, 2019, 56(9): 91401--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF