首页 > 论文 > 光谱学与光谱分析 > 34卷 > 10期(pp:2679-2684)

基于便携式近红外技术的生鲜乳品质现场评价

On-Site Evaluation of Raw Milk Qualities by Portable Vis/NIR Transmittance Technique

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

生鲜乳作为乳制品生产的基本原料, 其质量是保证乳制品食用安全、 维护人类健康的基础。 可见/近红外光谱技术结合化学计量学方法, 构建生鲜乳品质指标的数学模型, 实现生鲜乳品质的现场评价。 在不同年份, 收集88份来自不同奶牛个体的生鲜乳样品。 便携式光谱仪采集生鲜乳漫透射光谱(500~1 010 nm), 二阶导数和卷积平滑进行光谱预处理, 以消除脂肪球引起的光散射和高频噪声。 变窗宽移动窗口偏最小二乘法(CSMWPLS)和遗传偏最小二乘法(GAPLS)用于筛选信息区间, 并构建预测模型。 CSMWPLS与GAPLS模型的预测性能相当, 脂肪、 蛋白质、 干物质和乳糖的预测标准误差(RMSEP)分别为0.115 6/0.103 3, 0.096 2/0.113 7, 0.201 3/0.123 7和0.077 4/0.066 8, 相对预测误差(RPD)分别为8.99/10.06, 3.53/2.99, 5.76/9.38和1.81/2.10。 同时构建了生鲜乳品质指标的多元线性回归(MLR)方程, 采用的最优变量数分别为8, 10, 9和7。 采用外部数据集检验, MLR预测性能与PLS相近甚至更优, 脂肪、 蛋白质、 干物质和乳糖模型的RMSEP分别为0.107 0, 0.093 0, 0.136 0和0.065 8; 相对预测误差(RPD)分别为9.72, 3.66, 8.53和2.13, 可用于现场准确测量。 结果显示, 便携式近红外光谱仪结合MLR模型可实现生鲜乳品质的现场快速评价, 为生鲜乳按质论价收购提供了一种新方法, 同时为便携式乳品近红外专用仪器设计提供技术参考。

Abstract

To ensure the material safety of dairy products, visible (Vis)/near infrared (NIR) spectroscopy combined with chemometrics methods was used to develop models for fat, protein, dry matter (DM) and lactose on-site evaluation. A total of 88 raw milk samples were collected from individual livestocks in different years. The spectral of raw milk were measured by a portable Vis/NIR spectrometer with diffused transmittance accessory. To remove the scatter effect and baseline drift, the diffused transmittance spectra were preprocessed by 2nd order derivative with Savitsky-Golay (polynomial order 2, data point 25). Changeable size moving window partial least squares (CSMWPLS) and genetic algorithms partial least squares (GAPLS) methods were suggested to select informative regions for PLS calibration. The PLS and multiple linear regression (MLR) methods were used to develop models for predicting quality index of raw milk. The prediction performance of CSMWPLS models were similar to GAPLS models for fat, protein, DM and lactose evaluation, the root mean standard errors of prediction (RMSEP) were 0.115 6/0.103 3, 0.096 2/0.113 7, 0.201 3/0.123 7 and 0.077 4/0.066 8, and the relative standard deviations of prediction (RPD) were 8.99/10.06, 3.53/2.99, 5.76/9.38 and 1.81/2.10, respectively. Meanwhile, the MLR models were also calibrated with 8, 10, 9 and 7 variables for fat, protein, DM and lactose, respectively. The prediction performance of MLR models was better than or close to PLS models. The MLR models to predict fat, protein, DM and lactose yielded the RMSEP of 0.107 0, 0.093 0, 0.136 0 and 0.065 8, and the RPD of 9.72, 3.66, 8.53 and 2.13, respectively. The results demonstrated the usefulness of Vis/NIR spectra combined with multivariate calibration methods as an objective and rapid method for the quality evaluation of complicated raw milks. And the results obtained also highlight the potential of portable Vis/NIR instruments for on-site assessing quality indexes of raw milk.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O657.3

DOI:10.3964/j.issn.1000-0593(2014)10-2679-06

基金项目:国家自然科学基金项目(31071555)和河南省科技攻关项目(122102210247)资助

收稿日期:2014-05-20

修改稿日期:2014-07-27

网络出版日期:--

作者单位    点击查看

王加华:许昌学院食品与生物工程学院, 河南 许昌 461000
张晓伟:许昌学院食品与生物工程学院, 河南 许昌 461000
王军:许昌学院食品与生物工程学院, 河南 许昌 461000
韩东海:中国农业大学食品科学与营养工程学院, 北京 100083

联系人作者:王加华(w.jiahua@163.com)

备注:王加华, 1979年生, 许昌学院食品与生物工程学院副教授

【1】SasicS, Ozaki Y. Analytical Chemistry, 2001, 73(1): 64.

【2】Chen J Y, Iyo C, Terada F, et al. Journal of Near Infrared Spectroscopy, 2002, 10(4): 301.

【3】PI Fu-wei, WANG Yan-ling, LU Chao, et al(皮付伟, 王燕岭, 鲁超, 等). Modern Scientific Instruments(现代科学仪器), 2006, 16(4): 34.

【4】Artime C E C, de la Fuente J A B, Garcia M A P, et al. Conference Record-IEEE Instrumentation and Measurement Technology Conference Proceedings, (Victoria B C) 2008. IMTC, 2008. IEEE, 1471.

【5】Wu Di, He Yong, Feng Shuijuan. Analytica Chimica Acta, 2008, 610(2): 232.

【6】Tsenkova R, Meilina H, Kuroki S, et al. Journal of Near Infrared Spectroscopy, 2009, 17(6): 345.

【7】Kawasaki M, Kawamura S, Tsukahara M, et al. Computers and Electronics in Agriculture, 2008, 63(1): 22.

【8】Kawamura S, Kawasaki M, Nakatsuji H, et al. Sensing and Instrumentation for Food Quality and Safety, 2007, 1(1): 37.

【9】Al-Qadiri H M, Lin M, Al-Holy M A, et al. Journal of Dairy Science, 2008, 91(3): 950.

【10】Aernouts B, Polshin E, Lammertyn J, et al. Journal of Dairy Science, 2011, 94(11): 5315.

【11】AOAC international. 972. 16. AOAC official method- Fat, Lactose, Protein, and Solids in milk using Mid-infrared Spectroscopy Method. AOAC, 1996-03.

【12】Du Y P, Liang Y Z, Jiang J H, et al. Analytica Chimica Acta, 2004, 501(2): 183.

【13】Jiang J H, Berry R J, Siesler H W, et al. Analytical Chemistry, 2002, 74(14): 3555.

【14】Leardi R. Journal of Chemometrics, 2000, 14(5—6): 643.

【15】Bogomolov A, Melenteva A. Chemometrics and Intelligent Laboratory Systems, 2013, 126(7): 129.

引用该论文

WANG Jia-hua,ZHANG Xiao-wei,WANG Jun,HAN Dong-hai. On-Site Evaluation of Raw Milk Qualities by Portable Vis/NIR Transmittance Technique[J]. Spectroscopy and Spectral Analysis, 2014, 34(10): 2679-2684

王加华,张晓伟,王军,韩东海. 基于便携式近红外技术的生鲜乳品质现场评价[J]. 光谱学与光谱分析, 2014, 34(10): 2679-2684

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF