首页 > 论文 > 量子电子学报 > 31卷 > 5期(pp:563-568)

Er3+ 2.79 μm激光器转镜调Q系统特性分析

Characterization of Er3 + 2.79 μm rotating mirror Q-switched laser

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

当选择YSGG、GGG、GSGG、YAG、YLF作为基质材料时, Er3 + 的4I11/2 能级和4I13/2 能级之间能够跃迁产生2.7~3{\\mkern 1mu}μm的激光,该波段激光在医疗、军事等方面有着重要的应用价值。 在790 nm, Er:YSGG作为工作物质可产生2.79 μm激光。 通过建立Er:YSGG能级跃迁的速率方程,理论分析了转镜调Q激光器的系统特性, 并在此基础上进行了数值模拟。结果显示在给定激光工作物质各项参数的情况下, 系统各个变量能够对转镜调Q激光器的性能产生影响。这些结果将为类似实验的设计和改进提供理论指导。

Abstract

2.7~3μm laser, which has the important value of medical and military applications, are obtained from the transition 4I11/2 →4I13/2 with rare earth Er3 + as the active ions and YSGG, GGG, GSGG, YAG, YLF as the matrix material. Under 790 nm pump, the Er:YSGG as laser material can produce 2.79 μm stimulated emission. By building the rate equation of Er:YSGG energy level transition, the system characteristics of rotating mirror Q-switched laser were analyzed and numerical simulations were carried out. Result of the numerical simulations comprehensively shows the influence of system variables on the performance of rotating mirror Q-switched laser. These conclusion will provide theoretical guidance for the laser design and improvement of similar experiment.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN248.1

DOI:10.3969/j.issn.1007-5461.2014.05.008

所属栏目:激光技术与器件

基金项目:国家自然科学基金(612065173)资助项目

收稿日期:2014-01-17

修改稿日期:2014-02-21

网络出版日期:--

作者单位    点击查看

魏昊波:中国科学院安徽光学精密机械研究所, 安徽 合肥 230031安徽省光子器件与材料重点实验室, 安徽 合肥 230031
郭强:中国科学院安徽光学精密机械研究所, 安徽 合肥 230031安徽省光子器件与材料重点实验室, 安徽 合肥 230031
朱成君:中国科学院安徽光学精密机械研究所, 安徽 合肥 230031安徽省光子器件与材料重点实验室, 安徽 合肥 230031
孙敦陆:中国科学院安徽光学精密机械研究所, 安徽 合肥 230031安徽省光子器件与材料重点实验室, 安徽 合肥 230031
罗建乔:中国科学院安徽光学精密机械研究所, 安徽 合肥 230031安徽省光子器件与材料重点实验室, 安徽 合肥 230031
易新:中国科学院安徽光学精密机械研究所, 安徽 合肥 230031安徽省光子器件与材料重点实验室, 安徽 合肥 230031

联系人作者:魏昊波(whbms4353@sina.com)

备注:魏昊波(1988-), 河南洛阳人,研究生,主要从事固体激光技术方面的研究。

【1】Flock S, et al. Er:YAG laser-induced changes in skin in vivo and transdermal drug delivery [C]. Conference on Lasers in Surgery-Advanced Characterization, Therapeutics, and Systems VII, 1997, 2970: 374-379.

【2】Vodopyanov K L. Megawatt peak power 8~13 μm CdSe optical parametric generator pumped at 2.8 μm [J]. Optics Communications, 1998, 150(1-6): 210-212.

【3】Meng Xianfeng, Lu Chunhua, et al. Application and protection of laser technology [J]. Infrared and Laser Engineering (红外与激光工程), 2005, 34(2): 136-141 (in Chinese).

【4】Liu Jinsheng. Development of 2.79 μm Cr, Er:YSGG solid state laser technology [J]. Infrared and Laser Engineering (红外与激光工程), 2008, 37(2): 217-225 (in Chinese).

【5】Al’bers P, Ostroumov V G, et al. Low threshold YSGG:Cr:Er laser for the 3 μm range with a high pulse repetition frequency [J]. Soviet Journal of Quantum Electronics, 1988, 18(5): 558-559.

【6】Stoneman R C, Lynn J G, et al. Direct upper-state pumping of the 2.8 μm Er3 + : YLF laser [J]. IEEE Journal of Quantum Electronics, 1992, 28(4): 1041-1045.

【7】Stoneman R C, et al. Efficient resonantly pumped 2.8 μm Er3 + : GSGG laser [J]. Optics Letters, 1992, 17(11): 816-818.

【8】Tempus M, Luthy W, et al. 2.79 μm YSGG:Cr:Er laser pumped at 790 nm [J]. IEEE Journal of Quantum Electronics, 1994, 30(11): 2608-2611.

【9】Dinerman B J, et al. 3 μm cw operations in erbium-doped YSGG, GGG and YAG [J]. Optics Letters, 1994, 19(15): 1143-1145.

【10】Knz F, Frenz M, et al. Active and passive Q-switching of a 2.79 μm Er: Cr: YSGG laser [J]. Optics Communications, 1993, 103(5,6): 398-404.

【11】Wang T J, He Q Y, Gao J Y, et al. Efficient electrooptically Q-switched Er:Cr:YSGG laser oscillator-amplifier with a Glan-Taylor prism polarizer [J]. Laser Physics, 2006, 1(12): 1605-1609.

【12】Wang T J, He Q Y, Gao J Y, et al. Comparison of electrooptically Q-switched Er:Cr:YSGG lasers by two polarizers: Glan-Taylor prism and Brewster angle structure [J]. Laser Physics Letters, 2006, 3(7): 349-352.

【13】Liu J S, et al. Cr, Er:Y2.93 Sc1.43 Ga3.64 O12 laser giant pulse generation at 2.79 μm using electro-optic Q-switch [J]. Chinese Physics Letters, 2008, 25(4): 1293-1296.

【14】Maak P, Jakab L, et al. Efficient acousto-optic Q switching of Er:YSGG lasers at 2.79 μm wavelength [J]. Applied Optics, 2000, 39(18): 3053-3059.

【15】Skorczakowski M, et al. Mid-infrared Q-switched Er:YAG laser for medical applications [J]. Laser Physics Letters, 2010, 7(7): 498-504.

【16】Luo Jiangqiao, et al. Growth and LD pumped laser performance of Er:YSGG Mid-IR laser crystal [J]. Journal of Synthetic Crystals (人工晶体学报), 2012, 41(3): 564-567 (in Chinese).

【17】Huang Li, Guo Qiang, et al. Spectroscopic properties analysis and laser characteristic simulation of Er:GSGG crystal [J]. Chinese Journal of Quantum Electronics (量子电子学报), 2012, 29(1): 45-51 (in Chinese).

【18】Koechner W. Solid-State Laser Engineering [M]. Beijing: Science Press, 2002: 410-415.

【19】Li Fuli. Best working conditions of rotating mirror Q-switched four-level laser [J]. Chinese Journal of Laser (中国激光), 1975, 2(1): 11-17 (in Chinese).

【20】Midwinter J E. The theory of Q-switching applied to slow switching and pulse shaping for solid state lasers [J]. British Journal of Applied Physics, 1965, 1(8): 1125-1133.

【21】Xu Rongfu, Wei Guanghui. Design and accurate analysis of rotating mirror Q-switched system [J]. Laser Technology (激光技术), 1978, 1(1): 3-14 (in Chinese).

引用该论文

WEI Hao-bo,GUO Qiang,ZHU Cheng-jun,SUN Dun-lu,LUO Jian-qiao,YI Xin. Characterization of Er3 + 2.79 μm rotating mirror Q-switched laser[J]. Chinese Journal of Quantum Electronics, 2014, 31(5): 563-568

魏昊波,郭强,朱成君,孙敦陆,罗建乔,易新. Er3+ 2.79 μm激光器转镜调Q系统特性分析[J]. 量子电子学报, 2014, 31(5): 563-568

被引情况

【1】周哲,陈国梁,许立新,顾春,赵威. 全光纤电光主动调Q激光器. 量子电子学报, 2016, 33(5): 545-548

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF