首页 > 论文 > Chinese Optics Letters > 12卷 > 11期(p:111902)

Increased temperature acceptance bandwidth in frequency-doubling process using two different crystals

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

The temperature acceptance bandwidth of second-harmonic generation (SHG) can be dramatically improved by using two different kinds of nonlinear crystals with opposite signs of temperature derivation of phase mismatch. We study two SHG processes for the existing 1064 and 1550 nm high-average-power lasers. The numerical results show that the temperature acceptance bandwidth for SHG at 1064 nm can be three to five times larger than that of traditional single-crystal design, and it is also larger than that of using temperature-insensitive yttrium calcium oxyborate crystal. Importantly, the proposed design is applicable to various wavelengths, which suggests its potential in high-average-power SHG applications.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/col201412.111902

所属栏目:Nonlinear optics

收稿日期:2014-06-10

录用日期:2014-08-08

网络出版日期:2014-10-24

作者单位    点击查看

Lulu Wang:Key Laboratory for Micro-/Nano-Optoelectronic Devices of Ministry of Education, College of Physics and Microelectronic Science, Hunan University, Changsha 410082, ChinaDepartment of Electronic and Communication, Changsha University, Changsha 410003, China
Ying Chen:Key Laboratory for Micro-/Nano-Optoelectronic Devices of Ministry of Education, College of Physics and Microelectronic Science, Hunan University, Changsha 410082, ChinaDepartment of Electronic and Communication, Changsha University, Changsha 410003, China
Guangcan Liu:Department of Electronic and Communication, Changsha University, Changsha 410003, China

联系人作者:联系作者(yingchen@hnu.edu.cn)

备注:This work was partially supported by the National Natural Science Foundation of China (No. 61308005), the China Postdoctoral Science Foundation Funded Project (No. 2013M542106), the Hunan Postdoctoral Scientific Program (No. 2013RS4047), the Scientific Research Fund of Hunan Provincial Education Department (No. 14C0099), and the Science and Technology Program of Changsha (No. K1309012-11).

【1】G. K. Samanta, S. C. Kumar, K. Devi, and M. Ebrahim-Zadeh, Opt. Lett. 35, 3513 (2010).

【2】S. Zhang, L. Guo, M. Li, L. Zhang, X. Yan, W. Hou, X. Lin, and J. Li, Chin. Opt. Lett. 10, 071401 (2012).

【3】A. V. Smith, D. J. Armstrong, and W. J. Alford, J. Opt. Soc. Am. B 15, 122 (1998).

【4】?. Farsund, G. Arisholm, and G. Rustad, Opt. Express 18, 9229 (2010).

【5】A. Babushkin, R. S. Craxton, S. Oskoui, M. J. Guardalben, R. L. Keck, and W. Seka, Opt. Lett. 23, 927 (1998).

【6】L. Ji, B. Zhu, C. Liu, T. Wang, and Z. Lin, Chin. Opt. Lett. 12, 031902 (2014).

【7】C. Stolzenburg, W. Schule, I. Zawischa, A. Killi, and D. Sutteret, Proc. SPIE 7578, 75780A (2010).

【8】S. Liu, L. Dong, B. Zhang, J. He, Z. Wang, J. Ning, R. Wang, and X. Liu, Chin. Opt. Lett. 12, 031402 (2014).

【9】D. Cao, X. Zhang, W. Zheng, S. He, and Z. Sui, Chin. Opt. Lett. 5, 292 (2007).

【10】D. Hon and D. H. Bruesselbach, IEEE J. Quant. Electron. 16, 1356 (1980).

【11】N. Umemura, M. Ando, K. Suzuki, E. Takaoka, K. Kato, M. Yoshimura, Y. Mori, and T. Sasaki, Jpn. J. Appl. Phys. 42, 5040 (2003).

【12】M. Sun, L. Ji, Q. Bi, N. Wang, J. Kang, X. Xie, and Z. Lin, Chin. Opt. Lett. 9, 101901 (2011).

【13】C. E. Barker, D. Eimerl, and S. P. Velsko, J. Opt. Soc. Am. B 8, 2481 (1991).

【14】L. Deyra, X. Délen, G. Mennerat, P. Villeval, F. Balembois, and P. Georges, in Advanced Solid-State Lasers Congress AM4A.39 (2013).

【15】A.V. Smith, SNLO Nonlinear Optics Code (Sandia National -Laboratories, Albuquerque, 2012).

【16】D. Eimerl, IEEE J. Quant. Electron. 23, 575 (1987).

【17】M. Webb, IEEE J. Quant. Electron. 30, 1934 (1994).

【18】Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, and S. C. Wang, IEEE J. Quant. Electron. 33, 1424 (1997).

引用该论文

Lulu Wang, Ying Chen, Guangcan Liu, "Increased temperature acceptance bandwidth in frequency-doubling process using two different crystals," Chinese Optics Letters 12(11), 111902 (2014)

被引情况

【1】Baitao Zhang,Jian Ning,Zhaowei Wang,Kezhen Han,Jingliang He. High power red laser generation by second harmonic generation with GTR-KTP crystal. Chinese Optics Letters, 2015, 13(5): 51402-51405

CrossRef返回数据

【1】Ying Chen, Yuan Zhou, Zhiyou Wang. Improvement of the frequency-doubling efficiency of high-average-power lasers using multicrystal scheme with opposite thermal properties. Results in Physics, 2017, 7(): 3530

【2】Xiao-Di Liu, Lu Xu, Xiao-Yan Liang. Numerical investigation of output beam quality in efficient broadband optical parametric chirped pulse amplification. Optics Communications, 2017, 383(): 197 

【3】Zijian Cui, Dean Liu, Meizhi Sun, Jie Miao, Jianqiang Zhu. Compensation method for temperature-induced phase mismatch during frequency conversion in high-power laser systems. Journal of the Optical Society of America B, 2016, 33(4): 525

【4】Ying Chen, Yuan Zhou, Guobao Jiang, Lulu Wang. Numerical Simulations of Transfer of Spatial Beam Aberrations in Optical Parametric Chirped-Pulse Amplification. Advances in Condensed Matter Physics, 2018, 2018(): 1 

【5】Ying Chen, Guobao Jiang, Yuan Zhou, Xu Xia. Second harmonic generation in two different arrangement of type I collagen on nonlinear microscopy. Results in Physics, 2018, 10(): 391

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF