首页 > 论文 > 红外与毫米波学报 > 33卷 > 5期(pp:546-551)

自适应Split Bregman迭代的红外图像降噪算法

IR image denoising algorithm based on adaptive split bregman method

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

对于全变分降噪模型, Split Bregman算法收敛快而且具有较好的降噪效果.通过研究Split Bregman算法, 提出了一种自动调节拉格朗日乘子和罚参数的自适应Split Bregman算法.实验结果表明, 新方法与传统Split Bregman算法相比具有更快的收敛速度, 同时能在保持红外图像边缘特性的前提下有效地去除噪声.

Abstract

Split Bregman method, which can converge quickly and denoise very well, is considered to be an extremely efficient method for total variation denosing model. By studying Split Bregman method, an adaptive Split Bregman method which can adjust Lagerange multiplier and penalty parameter automatically was proposed. Experimental results show that the new method can not only converge faster than the traditional Split Bregman method, but also preserve the edge information while removing noises.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TP751.1

DOI:10.3724/sp.j.1010.2014.00546

基金项目:国家863计划资助项目(2011AA7031002G);国家十二五国防预研项目(41101050501).

收稿日期:2013-05-13

修改稿日期:2013-06-07

网络出版日期:--

作者单位    点击查看

王宇:中国科学院上海技术物理研究所, 上海 200083
汤心溢:中国科学院上海技术物理研究所, 上海 200083
罗易雪:中国科学院上海技术物理研究所, 上海 200083
王世勇:中国科学院上海技术物理研究所, 上海 200083

联系人作者:王宇(wangyucba@hotmail.com)

备注:王宇(1988-), 男, 湖北宜都人, 博士, 主要研究领域为红外成像系统、红外图像处理,

【1】ZHANG Hongying, PENG Qicong.Adaptive image denoising model based on total variation[J]. Opto-Electronic Engineering(张红瑛,彭启琮.全变分自适应图像去噪模型.光电工程),2006, 33(2): 50.

【2】Lenoid I. Rudin, Stanley Osher, Emad Fatemi. Nonlinear total variation based noise removal algorithms[J].1992, Physica D, 60: 259-268.

【3】LIU Yanxiong,DING Xuanhao. Split Bregman algorithm of the weighted variation model for image denoising[J].Journal of Guilin University of Electronic Technology(刘燕雄,丁宣浩.加权变分去噪模型的分裂Bregman算法,桂林电子科技大学学报),2011,31(4): 322-325.

【4】NIU Heming, DU Qian, ZHANG Jianxun.An Algorithm of Adaptive Total Variation Image Denoising[J].PR&AI(牛和明,杜茜,张建勋.一种自适应全变分图像去噪算法.模式识别与人工智能), 2011,24(6): 798-803.

【5】Wotao Yin, Stanley Osher, Donald Goldfarb, Jerome Darbon. Bregman Iterative Algorithms for L1-Minimization with Applications to Compressed Sensing[J].SIAM Journal of Imaging Sciences, 2008, 1(1): 143-168.

【6】Elaine T. Hale, Wotao Yin, Yin Zhang. A Fixed-Point Continuation Method for l1-Regularized Minimization with Applications to Compressed Sensing[R].CAAM Technical Report, 2007, TR07-07.

【7】Elaine T.Hale,Wotao Yin,Yin Zhang.Fixed-Point Continuation Applied to Compressed Sensing: Implementation and Numerical Experiments[J]. Journal of Computational Mathematics,2010, 28(2): 170-194.

【8】Tom GoldStein, Stanley Osher. The Split Bregman Method for L1 Regularized Problems[J].SIAM Journal of Imaging Sciences,2009,2(2): 323-343.

【9】YU Ruiyan, LIU Wen. A Fast Algorithm for Solving Total Variation Model Based Image Denoising[J]. Journal of WUT(Information and Management Engineering)(余瑞艳,刘文.全变差图像去噪模型的快速求解.武汉理工大学学报(信息与管理工程版)),2011, 33(2): 197-199.

【10】Antonin Chambolle,Pierre-Louis Lions.Image recovery via total variation minimization and related problems[J].Numerische Mathematic.1997, 76: 167-188.

【11】HUANG Wenhui,CHEN Renlei,ZHANG Jiamou. Improvement and Implementation of Objective Digital Video Quality Measurement[J].Journal of Beijing University of Posts and Telecommunications(黄文辉,陈仁雷,张家谋.数字视频图像质量客观观测方法的改进与实现.北京邮电大学学报), 2005,28(24): 88-89.

引用该论文

WANG Yu,TANG Xin-Yi,LUO Yi-Xue,WANG Shi-Yong. IR image denoising algorithm based on adaptive split bregman method[J]. Journal of Infrared and Millimeter Waves, 2014, 33(5): 546-551

王宇,汤心溢,罗易雪,王世勇. 自适应Split Bregman迭代的红外图像降噪算法[J]. 红外与毫米波学报, 2014, 33(5): 546-551

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF