首页 > 论文 > Chinese Optics Letters > 12卷 > s2期(p:S23001)

X-ray fluorescence spectra quantitative analysis based on characteristic spectra optimization of partial least-squares method

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

The quantitative analysis of X-ray fluorescence (XRF) spectra is studied using the partial least-squares (PLS) method. The characteristic variables of spectra matrix of PLS are optimized by genetic algorithm. The subset of multi-component characteristic spectra matrix is established which is corresponding to their concentration. The individual fitness is calculated which combines the crossover validation parameters (prediction error square summation) and correlation coefficients (R2). The experimental result indicates that the predicated values improve using the PLS model of characteristic spectra optimization. Compared to the nonoptimized XRF spectra, the linear dependence of processed spectra averagely decreases by about 7%, root mean square error of calibration averagely increases by about 79.32, and root mean square error of cross-validation averagely increases by about 14.2.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/col201412.s23001

所属栏目:Spectroscopy

责任编辑:刘盛龄

收稿日期:2014-01-15

录用日期:2014-03-15

网络出版日期:2014-11-07

作者单位    点击查看

Wei Zhang:New Star Research Institute of Applied Technology, Hefei 230031, China
Lianfei Duan:New Star Research Institute of Applied Technology, Hefei 230031, China
Luozheng Zhang:New Star Research Institute of Applied Technology, Hefei 230031, China
Yujun Zhang:Key Laboratory of Environment Optics and Technology, Anhui Institute of Optics and Fine Mechanics, the Chinese Academy of Sciences, Hefei 230031, China
Liuyi Ling:Key Laboratory of Environment Optics and Technology, Anhui Institute of Optics and Fine Mechanics, the Chinese Academy of Sciences, Hefei 230031, China
Yunjun Yang:New Star Research Institute of Applied Technology, Hefei 230031, China

联系人作者:联系作者(wzhang_ly@hotmail.com)

备注:This work was supported by the Project of the Academic Fund (No. 2013XYJJ-008), the Science and Technology Program of Anhui province (No. 1206c0805012), and the National "863" Program (No. 2013AA065502).

【1】A. Ji, G. Y. Tao, S. J. Zhuo, and L. Q. Luo, X-ray Fluorescence Spectra Analysis (Science Press, 2003).

【2】R. Jenkins, X-Ray Fluorescence Spectrometry (Wiley, 1999).

【3】N. Tsoulfanidis, Measurement and Detection of Radiation (Taylor & Francis, 1995).

【4】Y. Liang, Spectral Analysis Foundation of XRF (Science Press, 2007).

【5】H. Wold, Path Models with Latent Variables: The NIPALS Approach, Quantitative Sociology: International Perspectives on Mathematical and Statistical Model Building (Academic Press, 1975).

【6】S. Wold, A. Ruhe, H. Wold, and W. J. Dunn, SIAM J. Sci. Stat. Comput. 5, 735 (1984).

【7】D. M. Haaland and E. V. Thomas, Am. Chem. Soc. 60, 1192 (1988).

【8】D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning (Addison-Wesley, 1989).

【9】A. Popov, Genetic Algorithms for Optimization, User Manual (Hamburg, 2005).

【10】K. Hasegawa, Y. Miyashita, and K. Funatsu, J. Chem. Inf. Comput. Sci. 37, 306 (1997).

【11】V. E. Vinzi, W. W. Chin, J. Henseler, and H. Wang, Handbook of Partial Least Squares (Springer-Verlag, 2010).

引用该论文

Wei Zhang, Lianfei Duan, Luozheng Zhang, Yujun Zhang, Liuyi Ling, Yunjun Yang, "X-ray fluorescence spectra quantitative analysis based on characteristic spectra optimization of partial least-squares method," Chinese Optics Letters 12(s2), S23001 (2014)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF