Chinese Optics Letters, 2014, 12 (s2): S22204, Published Online: Dec. 4, 2014  

Tool path generation for grinding a \Phi 1.45 m off-axis aspherical SiC mirror blank Download: 639次

Author Affiliations
Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Science, Changchun 130033, China
Abstract
Off-axis aspherical mirrors are growing in popularity in modern space-borne cameras having high resolutionand large field of view. Fabrication processes for these mirrors include surface generation by grinding wheel, free-abrasive lapping, and various polishing cycles. Surface generation by grinding wheel is the most efficient process among the whole fabrication processes. Therefore, technologies for accurately and cost efficiently generating the mirror blanks are highly indispensable. We propose, a single-point grinding mode and a four-step tool path generation technology to resolve the over travel problem, for directly machining the off-axis aspherical mirror blank. Technologies for surface geometrical modeling and wheel wear reduction/compensationare established. Using a commercial-available HASS-VF8 machining center, a silicon carbide mirror blank having a 1.45 m aperture is successfully generated. Result indicates that the main error source affecting the obtained grinding accuracy is wheel wear amount, other than the positioning accuracy of machining center. Therefore, error-compensation grinding is indispensable. We provide an alternative economical resolution to efficiently fabricate the large-scale off-axis aspherical surface.

Zhiyu Zhang. Tool path generation for grinding a \Phi 1.45 m off-axis aspherical SiC mirror blank[J]. Chinese Optics Letters, 2014, 12(s2): S22204.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!