强激光与粒子束, 2014, 26 (11): 119003, 网络出版: 2014-12-08   

激光冲击强化“残余应力洞”的形成机制

Formation mechanism of “residual stress hole” induced by laser shock peening
作者单位
1 空军工程大学 航空航天工程学院 等离子体重点实验室, 西安 710038
2 西安交通大学 机械工程学院, 西安 710049
3 中国人民解放军 94314部队, 郑州 450000
摘要
利用ABAQUS有限元软件进行了单个圆形高斯光斑的激光冲击强化数值模拟,分析材料表面光斑中心区域形成的“残余应力洞”现象,并通过分析材料的动态力学响应特征揭示了“残余应力洞”的形成机制。结果表明:在冲击波加载时,光斑边界处会产生很强的剪切应力,形成向四周传播的表面稀疏波和向材料内部传播的剪切波。当稀疏波同时传播到光斑中心,发生相遇、汇聚,使材料产生急剧的上下位移过程,造成冲击波加载塑性变形后的二次塑性变形。二次塑性变形中形成了较大的剪切塑性应变,并降低了冲击波加载阶段产生的轴向和径向塑性应变,使残余压应力降低,从而形成“残余应力洞”。
Abstract
Simulation of laser shock peening with one round gauss-spot was carried out by ABAQUS FEM software. A “residual stress hole” phenomena in the material surface was detected. The formation mechanism of “residual stress hole” was explained via analyzing the dynamic mechanics response of the material in the spot center. The results indicate that intense shear stress is generated during the loading of laser-induced shock wave, and rarefaction wave and shear wave are formed. Rarefaction wave spreads all around in the material surface and shear wave propagates inward. When the ambient rarefaction waves meet and converge in the spot center, the material rises and falls sharply and secondary plastic deformation is generated. Because of the secondary plastic deformation, a large shear plastic stain is formed and the axial and radial plastic strain which were formed under the laser-induced shock wave, are greatly reduced. After the secondary plastic deformation, the residual stress reducing in the spot center results in the “residual stress hole”.

王学德, 聂祥樊, 臧顺来, 何卫峰, 李启鹏. 激光冲击强化“残余应力洞”的形成机制[J]. 强激光与粒子束, 2014, 26(11): 119003. Wang Xuede, Nie Xiangfan, Zang Shunlai, He Weifeng, Li Qipeng. Formation mechanism of “residual stress hole” induced by laser shock peening[J]. High Power Laser and Particle Beams, 2014, 26(11): 119003.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!