首页 > 论文 > 中国激光 > 42卷 > 1期(pp:104003--1)

一种模拟生物组织内光传播的三维几何蒙特卡洛方法

A Three-Dimensional Geometric Monte Carlo Method for Simulation of Light Propagation in Biological Tissues

张永   陈斌   李东  
  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

提出一种几何蒙特卡洛方法(GMC),利用光子位置与物质界面间的几何关系在整个计算区域而非单个网格内计算光子传输。计算区域无网格离散,光在物质界面处的传播严格依据其实际过程进行,消除了网格蒙特卡洛方法(VMC)中的光传播误差并大幅提高了计算速度。对于包含单根血管的情况,采用10 μm 网格,GMC 的计算速度约为VMC 的25 倍。利用GMC 方法计算了激光在多根同轴血管簇皮肤组织模型中的能量沉积,发现血液体积分数不变时,血液能量吸收特性对血管分布的依赖性随着血管数量的增加而降低。当血管数量为20 根时,不同血管分布下血液能量吸收最大变动率不超过4%。这表明可以通过假设的血管分布开展研究而无需考虑真实的复杂血管结构,具有重要的实际应用意义。

Abstract

A three-dimensional geometric Monte Carlo (GMC) method is proposed. By taking advantage of the geometrical relationship between the photon position and the interface, GMC can simulate the photon transportation in the whole domain rather than a voxel. Discrete voxels are unnecessary and the photon motion is calculated according to the geometrical optics. Therefore the optical transmission error induced by the voxel Monte Carlo (VMC) method can be eliminated. Also, the computation time consumed by GMC is dramatically shortened, and GMC is about 25 times faster than VMC with voxel grid size of 10 microns for the single vessel situation. Through the calculation of the energy deposition in a tissue model with the multi-coaxial vessel cluster, it is found that the dependence of energy absorption on the vessel distribution will recede when the vessel number increases at a certain blood volume fraction (BVF). The largest deviation of blood energy absorption is 4% with 20 vessels when BVF is 5%. This implies that artificial vascular distribution can be used to predict the real absorption characteristics with the same blood volume fraction instead of difficult measurement of real complex distribution of blood vessels, which is of great practical importance for the clinical treatment.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:R318.51

DOI:10.3788/cjl201542.0104003

所属栏目:生物医学光子学与激光医学

基金项目:国家自然科学基金(51336006)

收稿日期:2014-09-11

修改稿日期:2014-10-15

网络出版日期:--

作者单位    点击查看

张永:西安交通大学动力工程多相流国家重点实验室, 陕西 西安 710049
陈斌:西安交通大学动力工程多相流国家重点实验室, 陕西 西安 710049
李东:西安交通大学动力工程多相流国家重点实验室, 陕西 西安 710049

联系人作者:张永(zhangyong4769@126.com)

备注:张永(1989-),男,博士研究生,主要从事激光生物医学方面的研究。

【1】Liu J S. Monte Carlo Strategies in Scientific Computing[M]. New York: Springer, 2008.

【2】Niemz M H. Laser-Tissue Interactions Fundamentals and Applications[M]. Zhang Zhenxi, Trans. Beijing: Science Press, 2005.
尼姆兹. 激光与生物组织的相互作用原理及应用[M]. 张镇西, 译. 北京: 科学出版社, 2005.

【3】Wilson B C, Adam G. A Monte Carlo model for the absorption and flux distributions of light in tissue[J]. Medical Physics, 1983, 10(6): 824-830.

【4】Wang L, Jacques S L, Zheng L. MCML-Monte Carlo modeling of light transport in multi-layered tissues[J]. Computer Methods and Programs in Biomedicine, 1995, 47(2): 131-146.

【5】Pfefer T J, Barton J K, Chan E K, et al.. A three-dimensional modular adaptable grid numerical model for light propagation during laser irradiation of skin tissue[J]. IEEE Journal of Selected Topics in Quantum Electronics, 1996, 2(4): 934-942.

【6】Binzoni T, Leung T S, Giust R, et al.. Light transport in tissue by 3D Monte Carlo: Influence of boundary voxelization[J]. Computer Methods and Programs in Biomedicine, 2008, 89(1): 14-23.

【7】Premru J, Milanic M, Majaron B. Monte Carlo simulation of radiation transfer in human skin with geometrically correct treatment of boundaries between different tissues[C]. SPIE, 2013, 5879: 85790Z.

【8】Shen H, Wang G. A tetrahedron-based inhomogeneous Monte Carlo optical simulator[J]. Physics in Medicine and Biology, 2010, 55(4): 947-962.

【9】Zhou J, Liu J. Numerical study on 3-D light and heat transport in biological tissues embedded with large blood vessels during laserinduced thermotherapy[J]. Numerical Heat Transfer, 2004, 45(5): 415-449.

【10】Hao Suli, Ding Jianhua, Lin Junxiu, et al.. The Monte Carlo simulation of the laser energy deposition in the skin of port wine stains [J]. Chinese Journal of Laser Medicine & Surgery, 2009, 18(1): 16-22.
郝素丽, 丁建华, 林钧岫, 等. 鲜红斑痣病变皮肤激光能量分布的蒙特卡罗模拟[J]. 中国激光医学杂志, 2009, 18(1): 16-22.

【11】Anderson R R, Parrish J A. Selective photothermolysis: Precise microsurgery by selective absorption of pulsed radiation[J]. Science, 1983, 220(4596): 524-527.

【12】Carroll L, Humphreys T R. Laser-tissue interactions[J]. Clinics in Dermatology, 2006, 24(1): 2-7.

【13】Kelly K M, Choi B, McFarlane S, et al.. Description and analysis of treatments for port-wine stain birthmarks[J]. Archives of Facial Plastic Surgery, 2005, 7(5): 287-294.

【14】Lucassen G W, Verkruysse W, Keijzer M, et al.. Light distributions in a port wine stain model containing multiple cylindrical and curved blood vessels[J]. Lasers in Surgery and Medicine, 1996, 18(4): 345-357.

【15】Goldman M P. Cutaneous and Cosmetic Laser Surgery[M]. New York: Elsevier, 2006.

【16】Verkruysse W, Lucassen G W, de Boer J F, et al.. Modelling light distributions of homogeneous versus discrete absorbers in light irradiated turbid media[J]. Physics in Medicine and Biology, 1997, 42(1): 51-65.

【17】Milanic M, Jia W, Nelson J S, et al.. Numerical optimization of sequential cryogen spray cooling and laser irradiation for improved therapy of port wine stain[J]. Lasers in Surgery and Medicine, 2011, 43(2): 164-175.

【18】Gu Ying, Huang Naiyan, Liu Fanguang, et al.. Simulations of the photobleaching effect on photodynamic therapies[J]. Chinese Journal of Laser Medicine & Surgery, 2005, 14(5): 273-278.
顾瑛, 黄乃艳, 刘凡光, 等. 数学仿真研究光漂白对光动力治疗鲜红斑痣的影响[J]. 中国激光医学杂志, 2006, 14(5): 273-278.

【19】Welch A J, Van Gemert M J C. Optical-Thermal Response of Laser-Irradiated Tissue[M]. New York: Springer, 1995.

【20】Barsky S H, Rosen S, Geer D E, et al.. The nature and evolution of port wine stains: A computer-assisted study[J]. Journal of Investigative Dermatology, 1980, 74(3): 154-157.

【21】Jacques S L. Optical assessment of cutaneous blood volume depends on the vessel size distribution: A computer simulation study[J]. Journal of Biophotonics, 2010, 3(1-2): 75-81.

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF