首页 > 论文 > 中国激光 > 42卷 > 1期(pp:113004--1)

基于去雾模型的红外图像对比度增强

Infrared Image Contrast Enhancement Based on Haze Remove Method

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为实现室外模糊红外图像对比度增强,提出一种基于去雾模型的红外图像增强方法。结合红外图像特点,对可见光去雾增强方法进行改进优化。采用三级高斯金字塔分解扩展实现图像快速均值滤波,获取透射率粗估计;通过图像统计信息自适应细化透射率,恢复出无雾图像;针对无雾图像整体亮度较暗现象,进一步采用背景抑制的分段对比度增强。实验结果表明:增强后图像细节信息突出,层次感丰富,人眼视觉效果良好。客观测评结果表明,该算法能有效增强红外图像对比度。嵌入式平台测试耗时28ms,可以实现实时红外图像增强处理。

Abstract

In order to enhance the outdoor blurred infrared image contrast, an infrared image enhancement based on haze remove method is proposed. The novel algorithm optimizes and improves the visual image haze remove method which combines the characteristics of the infrared images. In order to get the transmission rate coarse estimation, a fast average filtering using three levels Gaussian pyramid operation is presented. The haze free image is recovered through self- adaptive transmission rate calculated with the statistics information of image. To deal with low luminance problem of the whole haze free image, a sectional contrast enhancement way is proposed which is capable of background suppression. Experimental results show that the enhanced infrared image has more detail information and stronger gradient than the original and has a perfect visual effects. The objective evaluation parameters illustrate that the contrast of haze free infrared image increases effectively by the proposed algorithm. The proposed algorithm can realize real time infrared image enhancement processing, as embedded platform test takes 28 ms.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TP391

DOI:10.3788/cjl201542.0113004

所属栏目:大气与海洋光学

基金项目:国家自然科学基金(61205143)、吉林省科技厅重点项目(20110329)

收稿日期:2014-06-20

修改稿日期:2014-08-28

网络出版日期:--

作者单位    点击查看

李毅:中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033中国科学院大学, 北京 100049
张云峰:中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
张强:中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
耿爱辉:中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
陈娟:中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033

联系人作者:李毅(leey2009@qq.com)

备注:李毅(1988—),男,博士研究生,主要从事实时图像处理方面的研究。

【1】Jin Weiqi, Liu Bin, Fan Yongjie, et al.. Review on infrared image detail enhancement techniques[J]. Infrared and Laser Engineering, 2011, 40(12): 2521-2527.
金伟其, 刘斌, 范永杰, 等. 红外图像细节增强技术研究进展[J]. 红外与激光工程, 2011, 40(12): 2521-2527.

【2】Zhao Wenda, Zhao Jian, Zhao Fan, et al.. Variable infrared image enhancement of bimodal Gaussian function specification[J]. Chinese J Lasers, 2014, 41(3): 0309001.
赵文达, 赵建, 赵凡, 等. 双峰高斯函数规定化的变分红外图像增强[J]. 中国激光, 2013, 41(3): 0309001.

【3】S Mohan, M Ravishankar. Modified Contrast Limited Adaptive Histogram Equalization Based on Local Contrast Enhancement for Mammogram Images[M]. Berlin: Springer, 2013. 397-403.

【4】J Zhao, Y Chen, H Feng, et al.. Fast image enhancement using multi- scale saliency extraction in infrared imagery[J]. Optik International Journal for Light and Electron Optics Optics, 2014.

【5】Li Dan, Wang Hongtao. Fuzzy image enhancement based on dual chaotic quantum particle swarm algorithm[J]. Laser & Optoeletronics Progress, 2013, 50(10): 101102.
李丹, 王洪涛. 基于双混沌量子粒子群算法的的模糊图像增强研究[J]. 激光与光电子学进展, 2013, 50(10): 101102.

【6】Chen Lei, Yang Fengbao, Wang Zhishe, et al.. Research on fussion algorithm of infared and visible imagery based on variational enhancement model[J]. Laser & Optoeletronics Progress, 2014, 51(4): 041003.
陈磊, 杨风暴, 王志社, 等. 红外与可见光图像的变分增强融合算法研究[J]. 激光与光电子学进展, 2014, 51(4): 041003.

【7】Yin Wen, Li Yuanxiang, Zhou Zeming, et al.. Remote sensing image fusion based on sparse representation[J]. Acta Optic Sinica, 2013, 33(4): 0428003.
尹雯, 李元祥, 周则明, 等. 基于稀疏表示的遥感图像融合方法[J]. 光学学报, 2013, 33(4): 0428003.

【8】Wang Bingjian, Liu Shangqian, Zhou Huixin, et al.. Self-adaptive contrast enhancement algorithm for infrared based on plateau histogram[J]. Acta Photonica Sinica, 2005, 34(2): 299-301.
王炳建, 刘上乾, 周慧鑫, 等. 基于平台直方图的红外图像自适应增强方法[J]. 光子学报, 2005, 34(2): 299-301.

【9】Zhan Bichao, Wu Yiquan, Ji Shouxin. Infrared image enhancement method based on stationary wavelet transformation and Retinex [J]. Acta Optic Sinica, 2010, 30(10): 2788-2793.
占必超, 吴一全, 纪守新. 基于平稳小波变换和Retinex的红外图像增强方法[J]. 光学学报, 2010, 30(10): 2788-2793.

【10】Zhao Wenda, Zhao Jian, Han Xizhen, et al.. Infrared image enhancement based on variation partial differential equations[J]. Chinese Journal of Liquid Crystals and Displays, 2014, 29(2): 281-285.
赵文达, 赵建, 韩希珍, 等. 基于变分偏微分方程的红外图像增强算法研究[J]. 液晶与显示, 2014, 29(2): 281-285.

【11】Jia Hongguang, Wu Zepeng, Zhu Mingchao, et al.. Infrared image enhancement based on generalized linear operation and bilateral filter[J]. Optics and Precision Engineering, 2013, 21(12): 3272-3282.
贾宏光, 吴泽鹏, 朱明超, 等. 基于广义线性运算和双边滤波的红外图像增强[J]. 光学 精密工程, 2013, 21(12): 3272-3282.

【12】Wu Zepeng, Xuan Ming, Jia Hongguang, et al.. Infrared image dynamic compression and contrast enhancement based on optimal mapping curve[J]. Chinese J Lasers, 2013, 40(12): 1209002.
吴泽鹏, 宣明, 贾宏光, 等. 基于最优映射曲线的红外图像动态范围压缩和对比度增强方法[J]. 中国激光, 2013, 40(12): 1209002.

【13】K M He, J Sun, X Tang. Single image haze removal using dark channel prior[J]. Pattern Analysis and Machine Intelligence, IEEE Transaction on, 2011, 33(12): 2341-2353.

【14】J P Tarel, N Hautiere. Fast visibility restoration from a single color or gray level image[C]. Proceedings of IEEE, International Conference on Computer Vision, 2009. 2201-2208.

【15】K B Gibson, T Q Nguyen. Fast single image fog remove using the adaptive wiener filter[C]. 2013 IEEE International Conferrence on Image Processing(ICIP), 2013. 714-718.

【16】S Parthasarathy, P Sankaran. A Retinex based haze removal method[C]. Industrial and Information Systems, IEEE, 2012. 1-6.

【17】Zhang Bingbing, Dai Shengkui, Sun Wanyuan. Fast image haze-removal algorithm based on the prior dark-channel[J]. Journal of Image and Graphics, 2013, 18(2): 184-188.
张冰冰, 戴声奎. 孙万源. 基于暗原色先验模型的快速去雾算法[J]. 中国图象图形学报, 2013, 18(2): 184-188.

【18】Chu Hongli, Li Yuanxiang, Zhou Zeming, et al.. Optimized fast dehazing method based on dark channel prior[J]. Acta Electronica Sinica, 2013, 4(4): 791-797.
褚宏莉, 李元祥, 周则明, 等. 基于黑色通道的图像快速去雾优化算法[J]. 电子学报, 2013, 4(4): 791-797.

【19】Shi Defei, Li Bo, Ding Wen, et al.. Haze removal and enhancement using transmittance-dark channel prior based on object spectral characteristic[J]. Acta Automatica Sinica, 2013, 39(12): 2064-2070.
史德飞, 李勃, 丁文, 等. 基于地物波谱特性的透射率-暗原色先验去雾增强算法[J]. 自动化学报, 2013, 39(12): 2064-2070.

【20】X Dong, G Wang, Y Pang, et al.. Fast efficient algorithm for enhancement of low lighting video[C]. Multimedia and Expo (ICME), 2011 IEEE International Conference on, 2011. 1-6.

【21】X Zhang, P Shen, L Luo, et al.. Enhancement and noise reduction of very low light level images[C]. 21st International Conference on Pattern Recognition (ICPR), 2012. 2034-2037.

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF