首页 > 论文 > 激光与光电子学进展 > 52卷 > 1期(pp:10003--1)

结构光照明荧光显微镜突破衍射极限的原理和在生命科学中的应用

Structured Illumination Fluorescence Microscopy: Diffraction-Limit Breaking Principle and Application in Life Science

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

传统荧光显微镜的分辨率受到光学衍射极限的限制。使用结构光照明技术,可以实现突破衍射极限的超分辨成像。相对于其他突破衍射极限的超分辨成像方法,结构光照明显微技术具有装置结构简单、成像速度快等优势,在生命科学研究中发挥了重要作用。首先分析了基于结构光照明的二维超分辨率荧光成像、三维层析荧光成像和非线性结构光照明超分辨荧光显微成像的原理和图像处理算法,并根据不同的结构光产生机理,对基于光栅光调制、基于液晶空间光调制器光调制和基于数字微镜阵列光调制的结构光照明荧光显微镜装置做了阐述和比较,最后概述了结构光照明荧光显微镜在观察生物样品结构特性和动态特性中的应用。

Abstract

Resolution of traditional fluorescence microscopy is limited by the diffraction of light. Diffraction limit can be broken by structured illumination to get higher resolution. Compared to other super-resolution microscopy techniques, structured illumination fluorescence microscopy can achieve higher imaging speed and need a simple setup, which has an important application life science research. In this paper, we first illustrate the principle and reconstruction algorithm to obtain 2D and 3D super-resolution images as well as non-linear structured illumination. Then the generally used structured illumination method and setup based on grating, spatial light modulator (SLM) as well as digital micro-mirror device (DMD) are introduced and compared. At last we summarize the application of structured illumination fluorescence microscopy for observing biological structures and processes.

投稿润色
补充资料

中图分类号:O438.2

DOI:10.3788/lop52.010003

所属栏目:综述

责任编辑:殷建芳

基金项目:国家自然科学基金(51376191)、江苏省自然科学基金(BK2012628)、江苏省科技支撑计划社会发展项目(BE2010657)

收稿日期:2014-05-22

修改稿日期:2014-07-27

网络出版日期:2014-12-19

作者单位    点击查看

吴美瑞:中国科学院苏州生物医学工程技术研究所江苏省医用光学重点实验室, 江苏 苏州 215163中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033中国科学院大学, 北京 100049
杨西斌:中国科学院苏州生物医学工程技术研究所江苏省医用光学重点实验室, 江苏 苏州 215163中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033中国科学院大学, 北京 100049
熊大曦:中国科学院苏州生物医学工程技术研究所江苏省医用光学重点实验室, 江苏 苏州 215163
李辉:中国科学院苏州生物医学工程技术研究所江苏省医用光学重点实验室, 江苏 苏州 215163
武晓东:中国科学院苏州生物医学工程技术研究所江苏省医用光学重点实验室, 江苏 苏州 215163

联系人作者:吴美瑞(meirui_wu@163.com)

备注:吴美瑞(1990—),男,硕士研究生,主要从事超分辨成像方面的研究。

【1】Huang B, Babcock H, Zhuang X. Breaking the diffraction barrier: super-resolution imaging of cells[J]. Cell, 2010, 143(7): 1047-1058.

【2】Abbe E. Beitrge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung[J]. Archiv für mikroskopische Anatomie, 1873, 9(1): 413-418.

【3】Shi Shunxiang, Wang Xue′ en, Liu Jingsong. Physical Optics and Applied Optics[M]. Xi′ an: Xidian University Press, 2008, 139-142.
石顺祥, 王学恩, 刘劲松. 物理光学与应用光学[M]. 西安: 西安电子科技大学出版社, 2008. 139-142.

【4】Huang B, Bates M, Zhuang X. Super resolution fluorescence microscopy[J]. Annual review of biochemistry, 2009, 78: 993.

【5】Schermelleh L, Heintzmann R, Leonhardt H. A guide to super-resolution fluorescence microscopy[J]. The Journal of Cell Biology, 2010, 190(2): 165-175.

【6】Lü Zhijian, Lu Jingze, Wu Yaqiong, et al.. Introduction to theories of several super-resolution fluorescence microscopy methods and recent advance in the field[J]. Progress in Biochemistry and Biophysics, 2009, 36(12): 1626-1634.
吕志坚, 陆敬泽, 吴雅琼, 等. 几种超分辨率荧光显微技术的原理和近期进展[J]. 生物化学与生物物理进度, 2009, 36(12): 1626-1634.

【7】Mao Zhengle, Wang Chen, Chen Ya. Superresolution far-field fluorescence bio-imaging: breaking the diffraction barrier[J]. Chinese J Lasers, 2008, 35(9): 1283-1307.
毛峥乐, 王琛, 程亚. 超分辨远场生物荧光成像——突破光学衍射极限[J]. 中国激光, 2008, 35(9): 1283-1307.

【8】Betzig E, Patterson G H, Sougrat R, et al.. Imaging intracellular fluorescent proteins at nanometer resolution[J]. Science, 2006, 313(5793): 1642-1645.

【9】Rust M J, Bates M, Zhuang X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) [J]. Nature methods, 2006, 3(10): 793-796.

【10】Hell S W, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emissiondepletion fluorescence microscopy[J]. Opt Lett, 1994, 19(11): 780-782.

【11】Gustafsson M G. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy[J]. Journal of microscopy, 2000, 198(2): 82-87.

【12】Gustafsson M G, Agard D A, Sedat J W. Doubling the lateral resolution of wide-field fluorescence microscopy using structured illumination[C]. BiOS 2000 The International Symposium on Biomedical Optics, 2000. 141-150.

【13】Su Xianyu, Zhang Qican, Chen Wenjing. Three-dimensional imaging based on structured illumination[J]. Chinese J Lasers, 2014, 41(2): 0209001.
苏显渝, 张启灿, 陈文静. 结构光三维成像技术[J]. 中国激光, 2014, 41(2): 0209001.

【14】Liu Di, Yao Zhenning, Li Haifeng, et al.. Structured light acquisition system based on waveband separation[J]. Acta Optica Sinica, 2012, 32(6): 0612003.
柳迪, 姚振宁, 李海峰, 等. 基于波长分离的结构光采集系统[J]. 光学学报, 2012, 32(6): 0612003.

【15】Peng Yifan, Tao Yiyang, Yu Chao, et al.. Three-dimenaional display interaction device based on infrared structured light[J]. Acta Optica Sinica, 2013, 33(4): 0412005.
彭祎帆, 陶毅阳, 于超, 等. 基于红外结构光的三维显示用交互装置[J]. 光学学报, 2013, 33(4): 0412005.

【16】Su Xianyu, Li Jitao. Information Optics[M]. Chengdu: Sichuan University Press, 1999. 20-26.
苏显渝, 李继陶. 信息光学[M]. 成都: 四川大学出版社, 1999. 20-26.

【17】Zhang B, Zerubia J, Olivo-Marin J-C. Gaussian approximations of fluorescence microscope point-spread function models[J]. Applied Optics, 2007, 46(10): 1819-1829.

【18】Chang B J, Chou L J, Chang Y C, et al.. Isotropic image in structured illumination microscopy patterned with a spatial light modulator[J]. Optics Express, 2009, 17(17): 14710-14721.

【19】Stokseth P A. Properties of a defocused optical system[J]. J Opt Soc Am, 1969, 59(10): 1314-1321.

【20】Sedat J W. Fluorescence microscopy in three dimensions[M]// Methods in Cell Biology, fluorescence microscopy of living cells in culture, part B: quantitative fluorescence microscopy-imaging and spectroscopy: fluorescence microscopy of living cells in culture, 1989, 30: 353.

【21】Gustafsson M G, Shao L, Carlton P M, et al.. Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination[J]. Biophysical Journal, 2008, 94(12): 4957-4970.

【22】Neil M, Juskaitis R, Wilson T. Method of obtaining optical sectioning by using structured light in a conventional microscope[J]. Opt Lett, 1997, 22(24): 1905-1907.

【23】Karadagli c′ D, Wilson T. Image formation in structured illumination wide-field fluorescence microscopy[J]. Micron, 2008, 39(7): 808-818.

【24】Heintzmann R, Jovin T M, Cremer C. Saturated patterned excitation microscopy—a concept for optical resolution improvement[J]. J Opt Soc Am A, 2002, 19(8): 1599-1609.

【25】Heintzmann R. Saturated patterned excitation microscopy with two-dimensional excitation patterns[J]. Micron, 2003, 34(6): 283-291.

【26】Hao Xiang, Kuang Cuifang, Li Yanghui, et al.. Reversible saturable optical transitions based fluorescence nanoscopy[J]. Laser & Optoelectronics Progress, 2012, 49(3): 030005.
郝翔, 匡翠方, 李旸晖, 等. 可逆饱和光转移过程的荧光超分辨显微术[J]. 激光与光电子学进展, 2012, 49(3): 030005.

【27】Gustafsson M G. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(37): 13081-13086.

【28】Heintzmann R, Cremer C G. Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating[C]. BiOS Europe′98, 1999. 185-196.

【29】Thomas B, Momany M, Kner P. Optical sectioning structured illumination microscopy with enhanced sensitivity[J]. Journal of Optics, 2013, 15(9): 094004.

【30】Neil M, Jukaitis R, Wilson T. Real time 3D fluorescence microscopy by two beam interference illumination[J]. Opt Commun, 1998, 153(1): 1-4.

【31】Beversluis M R, Bryant G W, Stranick S J. Effects of inhomogeneous fields in superresolving structured-illumination microscopy[J]. J Opt Soc Am A, 2008, 25(6): 1371-1377.

【32】Hirvonen L M, Wicker K, Mandula O, et al.. Structured illumination microscopy of a living cell[J]. European Biophysics Journal, 2009, 38(6): 807-812.

【33】Shao L, Kner P, Rego E H, et al.. Super-resolution 3D microscopy of live whole cells using structured illumination[J]. Nature Methods, 2011, 8(12): 1044-1046.

【34】Kner P, Chhun B B, Griffis E R, et al.. Super-resolution video microscopy of live cells by structured illumination[J]. Nature Methods, 2009, 6(5): 339-342.

【35】Dan D, Lei M, Yao B, et al.. DMD-based LED-illumination Super-resolution and optical sectioning microscopy[J]. Scientific Reports, 2013, 3(1116): 1-7.

【36】Xu D, Jiang T, Li A, et al.. Fast optical sectioning obtained by structured illumination microscopy using a digital mirror device[J]. Journal of Biomedical Optics, 2013, 18(6): 060503.

【37】Fukano T, Miyawaki A. Whole-field fluorescence microscope with digital micromirror device: imaging of biological samples[J]. Appl Opt, 2003, 42(19): 4119-4124.

【38】Cai Dongmei, Yang Huizhen, Ling Ning, et al.. Diffraction effect of liquid crystal spatial light modulator using for beam deflection[J]. Chinese J Lasers, 2008, 35(4): 491-495.
蔡冬梅, 杨慧珍, 凌宁, 等. 液晶空间光调制器用于光束偏转控制的衍射效应[J]. 中国激光, 2009, 35(4): 491-495.

【39】Du Yanli, Ma Fengying, Gong Qiaoxia, et al.. Optical microscopic imaging technology based on spatial light modulator [J]. Laser & Optoelectronics Progress, 2014, 51(2): 020002.
杜艳丽, 马凤英, 弓巧侠, 等. 基于空间光调制器的光学显微成像技术[J]. 激光与光电子学进展, 2014, 51(2): 020002.

【40】Rego E H, Shao L, Macklin J J, et al.. Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution[J]. Proceedings of the National Academy of Sciences, 2012, 109(3): E135-E143.

【41】Fitzgibbon J, Bell K, King E, et al.. Super-resolution imaging of plasmodesmata using three-dimensional structured illumination microscopy[J]. Plant Physiology, 2010, 153(4): 1453-1463.

【42】Schermelleh L, Carlton P M, Haase S, et al.. Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy[J]. Science, 2008, 320(5881): 1332-1336.

【43】Rahman M, Abd-El-Barr M, Mack V, et al.. Optical imaging of cervical pre-cancers with structured illumination: an integrated approach[J]. Gynecologic Oncology, 2005, 99(3): S112-S115.

【44】Best G, Amberger R, Baddeley D, et al.. Structured illumination microscopy of autofluorescent aggregations in human tissue[J]. Micron, 2011, 42(4): 330-335.

【45】Sonnen K F, Schermelleh L, Leonhardt H, et al.. 3D-structured illumination microscopy provides novel insight into architecture of human centrosomes[J]. Biology Open, 2012, 1(10): 965-976.

【46】Carlton P M. Three-dimensional structured illumination microscopy and its application to chromosome structure[J]. Chromosome Research, 2008, 16(3): 351-365.

【47】York A G, Parekh S H, Dalle Nogare D, et al.. Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy[J]. Nature Methods, 2012, 9(7): 749-754.

【48】Lefman J, Scott K, Stranick S. Live, video-rate super-resolution microscopy using structured illumination and rapid GPU-based parallel processing[J]. Microscopy and Microanalysis, 2011, 17(2): 191-196.

【49】Isobe K, Takeda T, Mochizuki K, et al.. Enhancement of lateral resolution and optical sectioning capability of twophoton fluorescence microscopy by combining temporal-focusing with structured illumination[J]. Biomedical Optics Express, 2013, 4(11): 2396-2410.

【50】Rossberger S, Best G, Baddeley D, et al.. Combination of structured illumination and single molecule localization microscopy in one setup[J]. Journal of Optics, 2013, 15(9): 094003.

【51】Fedosseev R, Belyaev Y, Frohn J, et al.. Structured light illumination for extended resolution in fluorescence microscopy[J]. Optics and Lasers in Engineering, 2005, 43(3): 403-414.

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF