首页 > 论文 > 光学学报 > 35卷 > 2期(pp:0207001--1)

EMD阈值滤波在光纤陀螺漂移信号去噪中的应用

Application of EMD Threshold Filtering for Fiber Optical Gyro Drift Signal De-Noising

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

光纤陀螺(FOG)的漂移输出经常淹没在噪声中,直接建模补偿漂移信号非常困难,提出基于经验模态分解(EMD)的阈值滤波方法(EMD-T)对漂移信号预处理。为了提高EMD 分解的精确度,基于噪声传播模型引入一种有界噪声辅助分析的方法,将漂移信号中幅值小、频率高的噪声信息压缩至低阶本征模态函数中。为了验证算法的有效性,采集一款干涉型FOG 的静态漂移输出作为测试信号,将EMD-T 与基于小波包变换(WPT)和常规EMD(CEMD)的阈值滤波方法进行了对比分析。仿真结果及Allan方差分析表明,EMD-T较WPT和CEMD 滤波性能有显著的改善,经EMD-T 处理后,漂移信号的量化噪声(Q)和角度随机游走(N)分别由0.7862 μrad 和4.58×10-3(°)·h-1/2下降至0.1340 μrad 和9.03×10-4(°)·h-1/2。

Abstract

The drift signal of fiber optic gyroscope (FOG) is often buried in noise. It is difficult to compensate drift directly, and a novel threshold filtering method based on empirical mode decomposition (EMD) (designated as EMD-T) is proposed as a pre-processing tool. Based on the noise spread model of EMD, a bounded noise assist analysis method is introduced to improve the decomposition accuracy of EMD. The noises with low magnitude and high frequency are compressed into early intrinsic mode functions. The static output of interferometric FOG is adopted to verify the effectiveness of EMD-T. Comparison analysis with filtering methods based on wavelet packet transform (WPT) and conventional EMD (CEMD) is done. Experimental and Allan variance analysis results show that EMD-T outperforms denoising method based on WPT and CEMD. The quantization noise (Q) and angle random walk (N) are decreased from 0.7862 μrad and 4.58×10-3(°)·h-1/2 to 0.1340 μrad and 9.03×10-4(°)·h-1/2, respectively, after applying EMD-T.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:V241.5

DOI:10.3788/aos201535.0207001

所属栏目:傅里叶光学与光信号处理

责任编辑:张雁  信息反馈

基金项目:国家自然科学基金(51375087,50975049)、中央高校基本科研业务费专项资金资助、江苏省普通高校研究生科研创新计划资助项目(KYLX_0106)

收稿日期:2014-09-12

修改稿日期:2014-10-08

网络出版日期:--

作者单位    点击查看

崔冰波:东南大学仪器科学与工程学院, 江苏 南京 210096
陈熙源:东南大学仪器科学与工程学院, 江苏 南京 210096
宋锐:东南大学仪器科学与工程学院, 江苏 南京 210096

联系人作者:崔冰波(cuibingbo@163.com)

备注:崔冰波(1986—),男,博士研究生,主要从事非线性滤波、组合导航等方面的研究。

【1】Suo Xinxin, Yang Yuanhong, Yang Mingwei, et al.. Relative intensity noise characteristic of broadband sources and its effect on performance of closed-loop fiber optic gyroscope [J]. Chinese J Lasers, 2014, 41(6): 0605009.
索鑫鑫, 杨远洪, 杨明伟, 等. 宽谱光源相对强度噪声及对闭环光纤陀螺影响研究[J].中国激光, 2014, 41(6): 0605009.

【2】Wu Changxin, Yang Mingwei, Yang Yuanhong, et al.. Effect of fiber bend on interferometric fiber optical gyroscopes performance [J]. Acta Optica Sinica, 2014, 34(3): 0306005.
吴长莘, 杨明伟, 杨远洪, 等. 光纤弯曲对干涉式光纤陀螺性能的影响[J]. 光学学报, 2014, 34(3): 0306005.

【3】L Samrat, J Nayak, N Giribabu, et al.. Characterization of fiber optics gyro and noise compensation using discrete wavelet transform [C]. Second International Conference on Emerging Trends in Engineering and Technology, 2009. 909-913.

【4】Gao Wei, Zu Yue, Wang Wei, et al.. Research on real-time de-noising of FOG based on second generation wavelet transform [J]. Chinese J Scientific Instrument, 2012, 33(4): 774-779.
高伟, 祖悦, 王伟, 等. 基于二代小波的光纤陀螺实时降噪方法研究[J].仪器仪表学报, 2012, 33(4): 774-779.

【5】Li Jialei, Xu Hualong, He Jing. Research and improvement of denoising method of fiber optic gyroscope based on wavelet packet analysis [J]. Acta Optical Sinica, 2010, 30(8): 2224-2228.
李家垒, 许化龙, 何婧. 光纤陀螺信号的小波包去噪及改进[J]. 光学学报, 2010, 30(8): 2224-2228.

【6】C Kownacki. Optimization approach to adapt Kalman filters for the real-time application of accelerometer and gyroscope signals filtering [J]. Digit Signal Process, 2011, 21(1): 131-140.

【7】X Wu, L Duan, W Chen. A Kalman filter approach based on random drift data of fiber optic gyro [C]. Industrial Electronics and Applications (ICIEA), 2011: 1933-1937.

【8】R Peesapati, S L Sabat, K P Karthik, et al.. Efficient hybrid Kalman filter for denoising fiber optic gyroscope signal [J]. Optik, 2013, 124(20): 4549-4556.

【9】Shen Chong, Chen Xiyuan. Denoising algorithm for FOG based on wavelet packet transform and FLP algorithm [J]. Journal of Southeast University(Natural Science Edition), 2011, 41(5): 978-981.
申冲, 陈熙源. 基于小波包变换与前向线性预测滤波的光纤陀螺去噪算法[J].东南大学学报(自然科学版), 2011, 41(5): 978-981.

【10】N E Huang, Z Shen, S R Long, et al.. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [J]. Proc R Soc Lond A, 1998, 454: 903-995.

【11】J Chen, X D Shang. GPS multipath effect mitigation algorithm based on empirical mode decomposition [J]. Earth and Space, 2010: 2395-2404.

【12】L H She, Z Q Xu, S Zhang, et al.. De- noising of ECG based on EMD improved- thresholding and mathematical morphology operation [J]. Proc IEEE BMEI, 2010: 838-842.

【13】Y Kopsinis, S McLaughlin. Development of EMD based denoising methods inspired by wavelet thresholding [J]. Transactions on Signal Processing, 2009, 57(4): 1351-1362.

【14】S W Dang, W F Tian, F Qian. EMD- and LWT-based stochastic noise elimination method for fiber optic gyro [J]. Measurement, 2011, 44(10): 2190-2193.

【15】M A Colominas, G Schlotthauer, M E Torres. Improved complete ensemble EMD: a suitable tool for biomedical signal processing [J]. Biomed Signal Process Control, 2014, 14(1):19-29.

【16】Cui Bingbo, Chen Xiyuan. Multipath mitigation of GPS signal based on improved EMD algorithm [J]. Journal of Chinese Inertial Technology, 2014, 22(3): 346-351.
崔冰波, 陈熙源. 基于一种改进EMD 算法的GPS多径效应抑制方法[J].中国惯性技术学报, 2014, 22(3): 346-351.

【17】P Flandrin, P. GonCalves, Gabriel Rilling. Detrending and denoising with empirical mode decompositions [J]. Eusipco, 12th European Signal Processing Conference, 2004: 1581-1584.

【18】Wu Zhaohua, N E Huang. Ensemble empirical mode decomposition: a noise assisted data analysis method [J]. Advances in Adaptive Data Analysis, 2009, 1(1): 1-41.

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF