首页 > 论文 > 光学学报 > 35卷 > 2期(pp:0230005--1)

基于中红外QCL激光和新型多通池高灵敏度测量CO和N2O的研究

Research on High Sensitivity Measurement of N2O and CO Based on MIR-QCL and Novel Compact Multi-Pass Gas Cell

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

利用量子级联激光器(QCL)结合新型小型化光学多通吸收池高灵敏度同时测量CO 和N2O 痕量气体。所用激光为工作在4.3 mm 附近的宽调谐、无跳模外腔量子级联激光器,激光在较短的时间内(1 s)连续波长扫描,并覆盖N2O(2203.73333 cm-1)和CO(2203.161 cm-1)两种分子的吸收谱线,从而实现对N2O 和CO 的同时测量。利用物理基长为12 cm 的新型小型化光学多通吸收池,探测光在吸收池内来回反射243次,有效光程达到29 m。利用波长调制吸收光谱和二次谐波探测技术实现了对N2O 和CO 的高灵敏度探测,测量系统的最低可探测浓度极限约为2.0×10-9(N2O)和1.7×10-9(CO)。

Abstract

A quantum cascade laser (QCL)-based absorption sensor using a novel compact multi-pass gas cell (MGC) for the simultaneous monitoring of CO and N2O is reported. A wide-tunable continuous wave, mode-hopfree external-cavity QCL operating at 4.3 mm is used in the sensor. The QCL can scan over the absorption peaks of N2O (2203.73333 cm-1) and CO (2203.161 cm-1) within a short scan process (1 s), and achieve the simultaneous detection of N2O and CO. The laser is reflected for 243 times, and the cell has an effective optical path length of 29 m with the physical length of 12 cm. Wavelength modulation spectroscopy with second harmonic (2f) detection is performed to achieve the high sensitivity detection of N2O and CO. The detection limit of this sensor is 2.0 × 10-9 for N2O and 1.7×10-9 for CO.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:O436

DOI:10.3788/aos201535.0230005

所属栏目:光谱学

基金项目:国家自然科学基(41175036,41205120)

收稿日期:2014-09-16

修改稿日期:2014-10-22

网络出版日期:--

作者单位    点击查看

谈图:中国科学院安徽光学精密机械研究所大气物理化学研究室, 安徽 合肥 230031
刘锟:中国科学院安徽光学精密机械研究所大气物理化学研究室, 安徽 合肥 230031
王贵师:中国科学院安徽光学精密机械研究所大气物理化学研究室, 安徽 合肥 230031
汪磊:中国科学院安徽光学精密机械研究所大气物理化学研究室, 安徽 合肥 230031
陈卫东:法国滨海大学大气物理化学实验室, 法国 敦刻尔克 59140
高晓明:中国科学院安徽光学精密机械研究所大气物理化学研究室, 安徽 合肥 230031

联系人作者:谈图(tantu@aiofm.ac.cn)

备注:谈图(1985—),男,博士研究生,主要从事高灵敏度激光光谱方面的研究。

【1】Tang Xiaoyan, Zhang Yuanhang, Shao Min. Atmospheric Environmental Chemistry [M]. Beijing: Higher Education Press, 2006. 56-67.
唐孝炎, 张远航, 邵敏. 大气环境化学[M]. 北京: 高等教育出版社, 2006. 56-67.

【2】T F Stocker, D Qin. Climate Change 2007: The Physical Science Basis [M]. Cambridge: Cambridge University Press, 2013.128-130.

【3】S A Montzka, E J Dlugokencky, J H Butler. Non-CO2 greenhouse gases and climate change [J]. Nature, 2011, 476: 43-50.

【4】P J Crutzen. The influence of nitrogen oxides on the atmospheric zone content [J]. Quarterly Journal of the Royal Meteorological Society, 1970, 96(408): 320-325.

【5】J A Logan, M J Prather, S C Wofsy, et al.. Tropospheric chemistry: A global perspective [J]. Journal of Geophysical Research, 1981, 86(c8): 7210-7254.

【6】H Fischer, F G Wienhold, P Hoor, et al.. Tracer correlations in the northern high latitude lowermost stratosphere: Influence of crosstropopause mass exchange [J]. Geophysical Research Letters, 2000, 27(1): 97-100.

【7】D D Nelson, B McManus, S Urbanski. High precision measurements of atmospheric nitrous oxide and methane using thermoelectrically cooled mid-infrared quantum cascade lasers and detectors [J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2004, 60(14): 3325-3335.

【8】S Wright, G Duxbury, N Langford. A compact quantum- cascade laser based spectrometer for monitoring the concentrations of methane and nitrous oxide in the troposphere [J]. Applied Physics B, 2006, 85(2-3): 243-249.

【9】J Li, U Parchatka, H Fischer. Development of field-deployable QCL sensor for simultaneous detection of ambient N2O and CO [J]. Sensors and Actuators B: Chemical, 2013, 182: 659-667.

【10】L Tao, K Sun, M A Khan. Compact and portable open-path sensor for simultaneous measurements of atmospheric N2O and CO using a quantum cascade laser [J]. Optics Express, 2012, 20(27): 28106-28118.

【11】Xia Hua, Dong Fengzhong, Tu Guojie, et al.. High sensitive detection of carbon monoxide based on novel multi-pass cell [J]. Acta Optica Sinica, 2010, 30(9): 2596-2601.
夏滑, 董凤忠, 涂郭结, 等. 基于新型长光程多次反射池的CO 高灵敏度检测[J]. 光学学报, 2010, 30(9): 2596-2601.

【12】Dong Lei, Ma Weiguang, Zhang Lei, et al.. Mid-IR ultra-sensitive CO detection based on pulsed quartz enhanced photoacoustic spectroscopy [J]. Acta Optica Sinica, 2014, 34(1): 0130002.
董磊, 马维光, 张雷, 等. 基于脉冲石英增强光声光谱的中红外超高灵敏CO 探测[J]. 光学学报, 2014, 34(1): 0130002.

【13】Hu Yajun, Zhao Xuehong, Zhang Rui, et al.. Research on the effect of light intensity modulation on the line shape of the second harmonic in the wavelength modulation technology [J]. Acta Optica Sinica, 2013, 33(11): 1130002.
胡雅君, 赵学玒, 张锐, 等. 波长调制技术中光强调制对二次谐波线型的影响研究[J]. 光学学报, 2013, 33(11): 1130002.

【14】J Reid, D Labrie. Second-harmonic detection with tunable diode lasers comparison of experiment and theory [J]. Applied Physics B, 1981, 26(3): 203-210.

【15】P Kluczynski, O Axner. Theoretical description based on Fourier analysis of wavelength-modulation spectrometry in terms of analytical and background signals [J]. Applied Optics, 1999, 38(27): 5803-5815.

【16】He Junfeng, Kan Ruifeng, Xu Zhenyu, et al.. Derivative spectrum and concentration inversion algorithm of tunable diode laser absorption spectroscopy oxygen measurement [J]. Acta Optica Sinica, 2014, 34(4): 0430003.
何俊峰, 阚瑞峰, 许振宇, 等. 可调谐二极管激光吸收光谱氧气测量中的导数光谱处理与浓度反演算法研究[J]. 光学学报, 2014, 34(4): 0430003.

【17】I D Lindsay, P Gro, C J Lee. Mid-infrared wavelength- and frequency-modulation spectroscopy with a pump-modulated singlyresonant optical parametric oscillator [J]. Optics Express, 2006, 14(25): 12341-12346.

【18】A Farooq, J B Jeffries, R K Hanson. Sensitive detection of temperature behind reflected shock waves using wavelength modulation spectroscopy of CO2 near 2.7 mm [J]. Applied Physics B, 2009, 96(1): 161-173.

【19】G S Engel, E J Moyer. Precise multipass Herriott cell design: Derivation of controlling design equations [J]. Optics Letters, 2007, 32(6): 704-706.

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF