首页 > 论文 > 激光技术 > 39卷 > 3期(pp:320-324)

激光修锐砂轮工艺参量的预测和优化算法

Prediction and optimization algorithm of process parameters for laser dressing grinding wheels

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为了找到一种适用于激光修锐砂轮工艺参量预测和优化的方法,采用神经网络和粒子群算法,建立了激光修锐砂轮工艺参量优化模型.首先构建了工艺参量与工件表面粗糙度之间映射关系的神经网络模型,然后基于预测模型采用粒子群算法实现工艺参量优化,最后采用粒子群算法优化获取的5组工艺参量进行了激光修锐试验.结果表明,样本值与神经网络仿真输出值的相对误差小于3%,试验值与期望值的相对误差控制在6%以内.综合说明该优化模型具备良好的优化能力.

Abstract

In order to find a method of prediction and optimization of laser dressing grinding wheel,an optimization model of process parameters for laser dressing grinding wheels was established based on the neural network and particle swarm optimization.Firstly,the neural network model mapping the relationship between the process parameters and the specimen surface roughness was constructed .Then,the process parameters were optimized by means of the particle swarm optimization algorithm based on the predication model.Finally,laser dressing experiments were carried out based on 5 groups of parameters optimized by the particle swarm algorithm.Experimental results show that the relative error between the sample value and output value from neural network is less than 3% and the relative error between the test value and the expected value is lower than 6%.In conclusion,the model has good ability of optimization.

投稿润色
补充资料

中图分类号:TN249

DOI:10.7510/jgjs.issn.1001-3806.2015.03.008

所属栏目:激光与光电子技术应用

基金项目:国家科技重大专项课题资助项目(2012ZX04003-101)

收稿日期:2014-04-21

修改稿日期:2014-05-04

网络出版日期:--

作者单位    点击查看

周聪:湖南大学 激光研究所, 湖南大学 410082
张玲:湖南大学 激光研究所, 湖南大学 410082
陈根余:湖南大学 激光研究所, 湖南大学 410082湖南大学 汽车车身先进设计制造国家重点实验室, 长沙 410082
邓辉:湖南大学 激光研究所, 湖南大学 410082
蔡颂:湖南大学 激光研究所, 湖南大学 410082

联系人作者:周聪(hdgychen@163.com)

备注:周聪(1979-),男,助理研究员,现主要从事激光烧蚀加工、激光焊接焊缝跟踪技术、激光加工制造过程中的信号检测与控制技术及其应用方面的研究.

【1】BABU N R,RADHAKRISHNAN V,MURTI Y V G S.Investigation on laser dressing of grinding wheels——Part Ⅰ:preliminary study[J].Journal of Engineering for Industry,1989,111(3):244-252.

【2】CHEN G Y,LI Z G,BU C,et al.The experiment studies of dressing of bronze-bonded diamond grinding wheels using a pulsed fiber laser[J].Laser Technology,2013,37(4):705-711(in Chinese).

【3】MA H L,CHEN G Y,LIU L,et al.Truing and dressing super-abrasive wheels by acoustic-optic Q-switched YAG pulsed laser[J].Journal of Hunan University (Natural Science Edition),2004,31(2):56-59(in Chinese).

【4】DOLDA C,TRANSCHEL R,RABIEYA B M,et al.A study on laser touch dressing of electroplated diamond wheels using pulsed picosecond laser sources[J].Manufacturing Technology,2011,60(1):363-366.

【5】CHRISTIAN W,MOHAMMAD R,MAXIMILIAN W,et al.Dressing and truing of hybrid bonded CBN grinding tools using a short-pulsed fiber laser[J].Manufacturing Technology,2011,60(1):279-282.

【6】CHEN G Y.The research on mechanism and technology for laser truing and dressing of bronze-bonded diamond grinding wheels by acoustic-optic Q-switched Nd∶YAG pulsed laser [D].Changsha:Hunan University,2006:28-34(in Chinese).

【7】CHEN G Y,CHEN C,BU C,et al.Numerical simulation and experiment for online truing and dressing of bronze-bonded diamond grinding wheels with laser[J].Laser Technology,2012,36(4):433-437(in Chinese).

【8】YIN C Q.Methods and applications of artificial intelligence [M].Wuhan:Huazhong University of Science and Technology Press,2007:224-237(in Chinese).

【9】HORNIK K,STINCHCOME M,WHITE H.Multilayer feed-forward networks are universal approximators[J].Neural Networks,1989,2(5):359-366.

【10】LEI D M,YAN X P.Intelligent multi-objective optimization algorithm and its application [M].Beijing:Science Press,2009:78-80(in Chinese).

【11】PAN F.Particle swarm optimizer and multi-object optimization[M].Beijing:Beijing University of Technology Press,2013:9-14(in Chinese).

引用该论文

ZHOU Cong,ZHANG Ling,CHEN Genyu,DENG Hui,CAI Song. Prediction and optimization algorithm of process parameters for laser dressing grinding wheels[J]. Laser Technology, 2015, 39(3): 320-324

周聪,张玲,陈根余,邓辉,蔡颂. 激光修锐砂轮工艺参量的预测和优化算法[J]. 激光技术, 2015, 39(3): 320-324

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF