基于2.33 μm可调谐激光的石英音叉增强型光声光谱测量CO研究
Research on Detecting CO with Quartz Enhanced Photoacoustic Spectroscopy Based on 2.33 μm Distributed Feed Back Laser
摘要
采用新型的2.33 μm 近红外分布反馈式半导体激光器,开展了基于离轴石英音叉增强型光声光谱(QEPAS)探测一氧化碳气体的方法研究,并优化了系统的最佳调制频率、调制振幅。系统地研究了不同浓度下一氧化碳的信号,实验结果表明,离轴石英音叉增强型光声光谱的信号与一氧化碳浓度具有很好的线性关系。锁相积分时间为1 s 时,功率归一化的最小可探测等效噪声吸收系数为3 × 10-6 cm-1·W/ Hz 。
Abstract
The novel 2.33 μm distributed feed back laser is used to detect carbon monoxide with off-beam quartz enhanced photoacoustic spectroscopy (QEPAS). The parameters including modulation frequency, modulation amplitude are optimized. The signal of off-beam QEPAS versus concentration of carbon monoxide is investigated. Good linearity between off-beam QEPAS signal and concentration of carbon monoxide is obtained. A normalized noise equivalent absorption coefficient of 3 × 10-6 cm-1·W/ Hz is obtained with a 1 s time constant of lock-in amplifier.
中图分类号:O443.1
所属栏目:光谱学
基金项目:国家自然科学基金(41175036,41475023)、国家自然科学基金青年基金(41205120)、安徽省自然科学基金(11040606M147)
收稿日期:2014-12-01
修改稿日期:2015-01-04
网络出版日期:2015-04-28
作者单位 点击查看
刘锟:中国科学院安徽光学精密机械研究所大气物理化学研究室, 安徽 合肥 230031
王贵师:中国科学院安徽光学精密机械研究所大气物理化学研究室, 安徽 合肥 230031
汪磊:中国科学院安徽光学精密机械研究所大气物理化学研究室, 安徽 合肥 230031
谈图:中国科学院安徽光学精密机械研究所大气物理化学研究室, 安徽 合肥 230031
高晓明:中国科学院安徽光学精密机械研究所大气物理化学研究室, 安徽 合肥 230031
联系人作者:胡立兵(lbhu@mail.ustc.edu.cn)
备注:胡立兵(1986—),男,硕士研究生,主要从事光谱技术探测方面的研究。
【1】A Rosencwaig. Photoacoustics and Photoacoustic Spectroscopy[M]. New York: Wiley, 1980: 1-309.
【2】Z Bozkia, A Pognyb, G Szabo. Photoacoustic instruments for practical applications: Present, potentials, and future challenges[J]. Appl Spectrosc Rev, 2011, 46(1): 1-37.
【3】T Kuusela, J Kauppinen. Photoacoustic gas analysis using interferometric cantilever microphone[J]. Appl Spectrosc Rev, 2007, 42(5): 443-474.
【4】N Mohamad, P Iovenitti, T Vinay. Effective diaphragm area of spring-supported capacitive MEMS microphone designs [C]. SPIE, 2008, 7268: 726805.
【5】E L Holthoff, D A Heaps, P M Pellegrino. Development of a MEMS-scale photoacoustic chemical sensor using a quantum cascade laser[J]. IEEE Sens J, 2010, 10(3): 572-577.
【6】A Rosencwaig. Photoacoustic spectroscopy of solids[J]. Opt Commun, 1973, 7(4) : 305-308.
【7】A A Kosterev, F K Tittel, D V Serebryakov, et al.. Applications of quartz tuning forks in spectroscopic gas sensing[J]. Rev Sci Instrum, 2005, 76(4): 043105.
【8】A A Kosterev, Yu A Bakhirkin, R F Curl, et al.. Quartz-enhanced photoacoustic spectroscopy[J]. Opt Lett, 2002, 27(21): 1902-1904.
【9】A A Kosterev, F K Tittel. Ammonia detection by use of quartz-enhanced photoacoustic spectroscopy with a near-IR telecommunication diode laser[J]. Appl Opt, 2004, 43(33): 6213-6217.
【10】R Lewicki, G Wysocki, A A Kosterev, et al.. Carbon dioxide and ammonia detection using 2 mm diode laser based quartz-enhanced photoacoustic spectroscopy[J]. Appl Phys B, 2007, 87(1): 157-162.
【11】K Liu, J Li, L Wang, et al.. Trace gas sensor based on quartz tuning fork enhanced laser photoacoustic spectroscopy[J]. Appl Phys B, 2009, 94(3): 527-533.
【12】A A Kosterev, Y A Bakhirkin, F K Tittel, et al.. QEPAS methane sensor performance for humidified gases[J]. Appl Phys B, 2008, 92(1): 103-109.
【13】S Schilt, A A Kosterev, F K Tittel. Performance evaluation of a near infrared QEPAS based ethylene sensor[J]. Appl Phys B, 2009, 95(4): 813-824.
【14】A A Kosterev, T S Mosely, F K Tittel. Impact of humidity on quartz-enhanced photoacoustic spectroscopy based detection of HCN[J]. Appl Phys B, 2006, 85(2-3): 295-300.
【17】H Yi, K Liu, W Chen, et al.. Application of a broadband blue laser diode to trace NO2 detection using off-beam quartzenhanced photoacoustic spectroscopy[J]. Opt Lett, 2011, 36(4): 481-483.
【18】Y Ma, R Lewicki, M Razeghi, et al.. QEPAS based ppb-level detection of CO and N2O using a high power CW DFB-QCL [J]. Opt Express, 2013, 21(1): 1008-1019.
【19】C Bauer, U Willer, R Lewicki, et al.. A mid-infrared QEPAS sensor device for TATP detection[J], J Phys, 2009, 157 (1): 012002.
【20】K Liu, X Guo, H Yi, et al.. Off-beam quartz-enhanced photoacoustic spectroscopy[J]. Opt Lett, 2009, 34(10): 1594-1596.
【21】H Yi, K Liu, S Sun, et al.. Theoretical analysis of off beam quartz-enhanced photoacoustic spectroscopy trace gas sensor[J]. Opt Commun, 2012, 285(24): 5306-5312.
【22】H Yi, W Chen, X Guo, et al.. An acoustic model for microresonator in on beam quartz-enhanced photoacoustic spectroscopy [J]. Appl Phys B, 2012, 108(2): 361-367.
【23】M Jahjah, A Vicet, Y Rouillard. A QEPAS based methane sensor with a 2.35 mm antimonide laser[J]. Appl Phys B, 2012, 106(2): 483-489.
【24】L Dong, A A Kosterev, D Thomazy, et al.. QEPAS spectrophones: Design, optimization, and performance[J]. Appl Phys B, 2010, 100(3): 627-635.
【25】K Liu, H Yi, A A Kosterev, et al.. Trace gas detection based on off-beam quartz enhanced photoacoustic spectroscopy: Optimization and performance evaluation[J]. Rev Sci Instrum, 2010, 81(10): 103103.
【26】A Veres, Z Bozoki, A Mohacsi, et al.. External cavity diode laser based photoacoustic detection of CO2 at 1.43 mm: The effect of molecular relaxation[J]. Appl Spectrosc, 2003, 57(8): 900-905.
【27】U Burghaus, H Conrad. A molecular beam relaxation spectroscopy study of CO adsorption on Ag(ll0) and Pt(lll) [J]. Surface Sci, 1995, 331-333: 116-120.
【28】S Schilt, J -P Besson, L Thevenaz. Near-infrared laser photoacoustic detection of methane: The impact of molecular relaxation[J]. Appl Phys B, 2006, 82(2): 319-329.
引用该论文
Hu Libing,Liu Kun,Wang Guishi,Wang Lei,Tan Tu,Gao Xiaoming. Research on Detecting CO with Quartz Enhanced Photoacoustic Spectroscopy Based on 2.33 μm Distributed Feed Back Laser[J]. Laser & Optoelectronics Progress, 2015, 52(5): 053002
胡立兵,刘锟,王贵师,汪磊,谈图,高晓明. 基于2.33 μm可调谐激光的石英音叉增强型光声光谱测量CO研究[J]. 激光与光电子学进展, 2015, 52(5): 053002
被引情况
【1】陈颖,高光珍,蔡廷栋. 基于光声光谱的乙烯探测技术. 中国激光, 2017, 44(5): 511001--1
【2】周彧,刘锟,高晓明. 离轴石英谐振光声光谱CO2传感研究. 量子电子学报, 2019, 36(2): 137-142
【3】刘新,张婷,张刚,高光珍,蔡廷栋. 基于光声光谱技术的CO气体探测. 中国激光, 2020, 47(1): 111002--1