首页 > 论文 > 中国激光 > 42卷 > 6期(pp:606002--1)

Ge20Sb15Se65硫基光子晶体平板波导的宽带慢光特性研究

Investigation of Wideband Slow Light in Ge20Sb15Se65 Photonic Crystal Slab Waveguides

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

通过改变最内层两排空气孔的半径,研究了Ge20Sb15Se65 硫基光子晶体平板波导的宽带慢光特性。利用三维平面波展开法,通过计算得到波导的能带结构、群折射率和色散,并分析了它们与内层空气孔半径大小的关系。同时优化第一层和第二层空气孔的半径大小,得到了群速度色散为零的对称型硫系光子晶体波导结构,并在20%的变化范围内获得大小分别为125、40和18的群折射率,对应通信波长处的带宽分别为1.7、5.6、9.7 nm,并讨论了折射率对光子晶体波导慢光性能的影响。并为高非线性、低色散的宽带慢光硫基光子晶体平板波导器件的设计及制备提供了理论基础。

Abstract

The slow light propagation in a Ge20Sb15Se65 chalcogenide photonic crystal slab waveguide (PCSW) of air holes is investigated via the three-dimensional plane wave expansion (PWE) method. By perturbing the first two rows of air holes adjacent to the waveguide core, the group index, the bandwidth and the dispersion can be tuned effectively, and the symmetric chalcogenide photonic crystal slab waveguides with zero dispersion are obtained. The slow lights with the group indices of 125, 40, and 18 are demonstrated, with the bandwidths of 1.7, 5.6 and 9.7 nm, respectively. Finally, the effects of refractive index of chalcogenide materials on the slow light in the photonic crystal slab waveguide are discussed. It shows perfect slow-light properties in chalcogenide PCSWs and can be used as an affordable reference for further research in chalcogenide photonic crystal waveguide devices.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O734;TN252

DOI:10.3788/cjl201542.0606002

所属栏目:材料与薄膜

基金项目:国家自然科学基金(61107047)、宁波市新型光电功能材料及器件创新团队(2009B21007)、宁波大学王宽诚幸福基金

收稿日期:2014-12-24

修改稿日期:2015-01-21

网络出版日期:--

作者单位    点击查看

韩金涛:宁波大学高等技术研究院红外材料与器件实验室, 浙江 宁波 315211
张巍:宁波大学高等技术研究院红外材料与器件实验室, 浙江 宁波 315211
魏凤娟:宁波大学高等技术研究院红外材料与器件实验室, 浙江 宁波 315211
王贤旺:宁波大学高等技术研究院红外材料与器件实验室, 浙江 宁波 315211
章亮:宁波大学高等技术研究院红外材料与器件实验室, 浙江 宁波 315211
张培晴:宁波大学高等技术研究院红外材料与器件实验室, 浙江 宁波 315211
戴世勋:宁波大学高等技术研究院红外材料与器件实验室, 浙江 宁波 315211

联系人作者:韩金涛(hjt0829@163.com)

备注:韩金涛(1990—),男,硕士研究生,主要从事硫系光子晶体波导制备和特性等方面的研究。

【1】Qu Lianjie, Yang Yuede, Huang Yongzhen. Slow-light characteristics of photonic crystal waveguides[J]. Acta Optica Sinica, 2011, 31(1): 113002.
曲连杰, 杨跃德, 黄永箴. 光子晶体波导慢光特性研究[J]. 光学学报, 2011, 31(1): 113002.

【2】Li Zhiyuan, Gan Lin, Tow-dimensional silicon photonic crystal slab devices[J]. Atca Optica Sinica, 2011, 31(9): 0900119.
李志远, 甘霖. 二维硅基平板光子晶体器件[J]. 光学学报, 2011, 31(9): 0900119.

【3】Y Zhang, Z Li, B Li. Multimode interference effect and self- imaging principle in two- dimensional silicon photonic crystal waveguides for terahertz[J]. Opt Express, 2006, 14(7): 2679-2689.

【4】C Monat, B Corcoran, M Ebnali-Heidari, et al.. Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides[J]. Opt Express, 2009, 17(4): 2944-2953.

【5】C Husko, T D Vo, B Corcoran, et al.. Ultracompact all-optical XOR logic gate in a slow-light silicon photonic crystal waveguide[J]. Quantum Electronics Conference & Lasers and Electro-Optics (CLEO/IQEC/PACIFIC RIM), 2011, 19(21): 20681-20690.

【6】Y Zhao, Y Zhang, Q Wang. High sensitivity gas sensing method based on slow light in photonic crystal waveguide[J]. Sensors and Actuators B: Chemical, 2012, 173: 28-31.

【7】Zhang Wei, Wang Zhiyong, Wang Wenchao, et al.. Investigation on wideband slow light based on photonic- crystal coupled waveguides[J]. Acta Optica Sinica, 2012, 32(2): 0213001.
张伟, 王智勇, 王文超, 等. 基于光子晶体耦合波导的宽带慢光研究[J]. 光学学报, 2012, 32(2): 0213001.

【8】T Baba. Slow light in photonic crystals[J]. Nature Photonics, 2008, 2(8): 465-473.

【9】T F Krauss. Slow light in photonic crystal waveguides[J]. Journal of Physics D: Applied Physics, 2007, 40(9): 2666.

【10】Zhou Xingping, Shu Jing, Lu Binjie, et al.. Two- wavelength division demultiplexer based on triangular lattice photonic crystal resonant cavity[J]. Acta Optica Sinica, 2013, 33(1): 0123001.
周兴平, 疏静, 卢斌杰, 等. 基于三角晶格光子晶体谐振器的双通道解波分复用器[J]. 光学学报, 2013, 33(1): 0123001.

【11】Y A Vlasov, M O′Boyle, H F Hamann, et al.. Active control of slow light on a chip with photonic crystal waveguides[J]. Nature, 2005, 438(7064): 65-69.

【12】M D Lukin, A Imamoglu. Controlling photons using electromagnetically induced transparency[J]. Nature, 2001, 413(6853): 273-276.

【13】M S Bigelow, N N Lepeshkin, R W Boyd. Observation of ultraslow light propagation in a ruby crystal at room temperature[J]. Phys Rev Lett, 2003, 90(11): 113903.

【14】Wang Xianwang, Zhang Wei, Zhang Liang, et al.. Research progress of fabrication of chalcogenide glass photonic crystal waveguide [J]. Laser & Optoelectronics Progress, 2013, 50(12): 120001.
王贤旺, 张巍, 章亮, 等. 硫系玻璃光子晶体光波导的制备研究发展[J]. 激光与光电子学进展, 2013, 50(12): 120001.

【15】Zhang Liang, Zhang Wei, Nie Qiuhua, et al.. Research progress of tow- dimensional photonic crystal waveguide[J]. Laser & Optoelectronics Progress, 2013, 50(3): 030008.
章亮, 张巍, 聂秋华, 等. 二维光子晶体波导研究进展[J]. 激光与光子学进展, 2013, 50(3): 030008.

【16】Liu Shan, Shen Xiang, Xu Tiefeng, et al.. Dispersion characteristics of Ge20Sb15Se65 chalcogenide rib waveguide[J]. Atca Optica Sinica, 2013, 33(5): 0513001.
刘珊, 沈祥, 徐铁峰, 等. Ge20Sb15Se65硫系脊形光波导的色散特性[J]. 光学学报, 2013, 33(5): 0513001.

【17】A B Seddon. Chalcogenide glasses: A review of their preparation, properties and applications[J]. Journal of Non-Crystalline Solids, 1995, 184: 44-50.

【18】F Smektala, C Quemard, V Couderc, et al.. Non-linear optical properties of chalcogenide glasses measured by Z-scan[J]. Journal of Non-Crystalline Solids, 2000, 274(1): 232-237.

【19】A Zakery, S R Elliott. Optical properties and applications of chalcogenide glasses: A review[J]. Journal of Non-Crystalline Solids, 2003, 330(1): 1-12.

【20】C Monat, M Spurny, C Grillet, et al.. Third-harmonic generation in slow-light chalcogenide glass photonic crystal waveguides[J]. Opt Lett, 2011, 36(15): 2818-2820.

【21】M Spurny, L O′ Faolain, D A Bulla, et al.. Fabrication of low loss dispersion engineered chalcogenide photonic crystals[J]. Opt Express, 2011, 19(3): 1991-1996.

【22】K Suzuki, T Baba. Nonlinear light propagation in chalcogenide photonic crystal slow light waveguides[J]. Opt Express, 2010, 18(25): 26675-26685.

【23】K Suzuki, Y Hamachi, T Baba. Fabrication and characterization of chalcogenide glass photonic crystal waveguides[J]. Opt Express, 2009, 17(25): 22393-22400.

【24】H Kurt, K üstün, L Ayas. Study of different spectral regions and delay bandwidth relation in slow light photonic crystal waveguides [J]. Opt Express, 2010, 18(26): 26965-26977.

【25】J Liang, L Y Ren, M J Yun, et al.. Wideband ultraflat slow light with large group index in a W1 photonic crystal waveguide[J]. J Appl Phys, 2011, 110(6): 063103.

【26】L Dai, T Li, C Jiang. Wideband ultralow high-order-dispersion photonic crystal slow-light waveguide[J]. J Opt Soc Am B, 2011, 28(7): 1622-1626.

【27】B Meng, L Wang, W Huang, et al.. Wideband and low dispersion slow-light waveguide based on a photonic crystal with crescent-shaped air holes[J]. Appl Opt, 2012, 51(23): 5735-5742.

【28】Cao Ying, Nie Qiuhua, Xu Tiefeng, et al.. Optical properties and structure of Ge28Sb6S(66-x)Sex glasses[J]. Acta Photonica Sinica, 2010, 39(7): 1153-1157.
曹莹, 聂秋华, 徐铁峰, 等. Ge28Sb6S(66-x)Sex玻璃系统光学特性与结构[J]. 光子学报, 2010, 39(7): 1153-1157.

【29】Y Chen, X Shen, R Wang, et al.. Optical and structural properties of Ge-Sb-Se thin films fabricated by sputtering and thermal evaporation[J]. Journal of Alloys and Compounds, 2013, 548: 155-160.

【30】A Saynatjoki, M Mulot, J Ahopelto, et al.. Dispersion engineering of photonic crystal waveguides with ring-shaped holes[J]. Opt Express, 2007, 15(13): 8323-8328.

【31】J Li, T P White, L O′Faolain, et al.. Systematic design of flat band slow light in photonic crystal waveguides[J]. Opt Express, 2008, 16(9): 6227-6232.

【32】L H Frandsen, A V Lavrinenko, J Fage-Pedersen, et al.. Photonic crystal waveguides with semi-slow light and tailored dispersion properties[J]. Opt Express, 2006, 14(20): 9444-9450.

【33】R Hao, E Cassan, X Le Roux, et al.. Improvement of delay-bandwidth product in photonic crystal slow-light waveguides[J]. Opt Express, 2010, 18(16): 16309-16319.

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF