差分格式对偏微分方程滤波模型的影响
Impact on Partial Differential Equations Filtering Models of Difference Scheme
摘要
电子散斑干涉技术(ESPI)中,基于偏微分方程(PDE)的滤波模型是一种重要的滤波方法。偏微分方程滤波模型中的微分算符通常利用差分近似表示。给出了中心差分、九点差分、高阶差分三种不同的差分格式。以典型有效的方向二阶偏微分方程滤波模型为例,分别利用三种不同的差分格式近似滤波模型中的微分算符,通过模拟条纹图、相位图以及实验条纹图进行了分析研究,结果表明,对于密度变化特别大的条纹图,采用高阶差分格式能够更好地平衡高密度区域和稀疏密度区域的滤波效果,九点差分和中心差分格式需要使用均值滤波做进一步的处理,中心差分格式处理速度最快,高阶差分格式次之,九点差分格式则最慢。
Abstract
The partial differential equations (PDE) filtering model is an important filtering method in electronic speckle pattern interferometry (ESPI) technology. The differential operator is often approximated by difference scheme in PDE models. Three kinds of difference scheme such as central difference, nine point difference and higher difference are introduced. The representative orientation second order PDE filtering model is selected and analyzed, approximating differential operator in PDE model with three different difference schemes using simulated fringe image, simulated phase image and experiment fringe image. The result indicates the high density region and sparse density region can be balanced preferably with higher difference for large density change image. Nine point difference and central difference schemes should be deposed with average filtering. The processing rate with central difference scheme is the fastest, the higher difference takes the second place, and the nine point difference is the slowest.
中图分类号:O436.1
所属栏目:图像处理
基金项目:国家自然科学基金(61177007)、辽宁省教育厅科学研究一般项目(L2015411)
收稿日期:2015-01-25
修改稿日期:2015-02-27
网络出版日期:2015-08-12
作者单位 点击查看
唐晨:天津大学理学院应用物理系, 天津 300072
王亚杰:沈阳航空航天大学工程训练中心, 辽宁 沈阳 110136
联系人作者:王琳霖(wlin_23@163.com)
备注:王琳霖(1981—),女,博士,工程师,主要从事现代光学测试技术与光信息处理、图像处理等方面的研究。
【1】Wang Kaifu. Modern Optical Measurement and Image Processing[M]. Beijing: Science Press, 2012: 100-110.
王开福. 现代光测及其图像处理[M]. 北京: 科学出版社, 2012: 100-110.
【2】Tong Jingwei, Li Hongqi. Optical Mechanical Principle and Testing Technology[M]. Beijing: Science Press, 2009: 139-150.
佟景伟, 李鸿琦. 光力学原理及测试技术[M]. 北京: 科学出版社, 2009: 139-150.
【3】Jin Guanchang. Computer Aided Optical Measurement[M]. Beijing: Tsinghua University Press, 2007: 105-126.
金观昌. 计算机辅助光学测量[M]. 北京: 清华大学出版社, 2007: 105-126.
【5】A P Witkin. Scale-space filtering[J]. Proceedings of International Joint Conference on Artificial Intelligence, 1983: 1019-1021.
【6】P Perona, J Malik. Scale- space and edge detection using anisotropic diffusion[J]. IEEE Trans Pattern Anal Machine Intell, 1990, 12(7): 629-639.
【7】F Catté, P L Lions, J M Morel, et al.. Image selective smoothing and edge detection by nonlinear diffusion[J]. SIAM Journal on Numerical Analysis, 1992, 29(1): 182-193.
【8】Y Chen, C A Z Barcelos, B A Mairz. Smoothing and edge detection by time-varying coupled nonlinear diffusion equations [J]. Computer Vision and Image Understanding, 2001, 82(2): 85-100.
【9】L Alvarez, P L Lions, J M Morel. Image selective smoothing and edge detection by nonlinear diffusion · II[J]. SIAM J Numer Anal, 1992, 29(3): 845-866.
【10】Chen Tang, Linlin Wang, Haiqing Yan. Overview of anisotropic filtering methods based on partial differential equations for electronic speckle pattern interferometry[J]. Appl Opt, 2012, 51(20): 4916-4926.
【11】C Tang, L Han, H Ren, et al.. Second-order oriented partial-differential equations for denoising in electronic-specklepattern interferometry fringes[J]. Opt Lett, 2008, 33(19): 2179-2181.
【12】Dhananjay R Panchagade. Damage Prediction of Lead Free Ball Grid Array Packages under Shock and Drop Environment [D]. Alabama: Auburn University, 2007.
【13】Ta-Hsuan Lin. Assembly Process Development, Reliability and Numerical Assessment of Copper Column Flexible Flip Chip Technology[D]. New York: Binghamton University, 2008.
引用该论文
Wang Linlin,Tang Chen,Wang Yajie. Impact on Partial Differential Equations Filtering Models of Difference Scheme[J]. Laser & Optoelectronics Progress, 2015, 52(9): 091004
王琳霖,唐晨,王亚杰. 差分格式对偏微分方程滤波模型的影响[J]. 激光与光电子学进展, 2015, 52(9): 091004
被引情况
【1】叶小威,沈锋. 航天器轨道动力学模型及瞄准提前量误差分析. 中国激光, 2017, 44(6): 604003--1