激光与光电子学进展, 2015, 52 (9): 091602, 网络出版: 2015-08-28  

La,Ce,Nd 掺杂SnO2的电子结构和光学性质密度泛函理论研究 下载: 535次

Density Functional Theory Study on the Electronic Structure and Optical Properties of La,Ce and Nd doped SnO2
作者单位
延安大学物理与电子信息学院, 陕西 延安 716000
摘要
基于平面波赝势密度泛函理论,研究了La,Ce,Nd 掺杂SnO2的电子结构和光学性质.计算结果表明,La 附近的键长变化最大,而Nd 附近的键长变化最小,这表明稀土掺杂SnO2 引起的晶格畸变与掺杂原子的共价半径大小有关.能带结构表明,稀土掺杂可使SnO2的带隙变窄.La 掺杂相比较本征SnO2,带隙减小了0.892 eV,Nd 掺杂在SnO2的禁带中引入了3 个能级.差分电荷密度分析表明,稀土掺杂使SnO2的电子重新分配且由于f 电子的存在使其离子性增强.La 原子失电子最多,Nd 原子失电子最少,这和计算的能带结果是一致的.光学性质表明,介电函数的虚部和吸收函数因稀土掺杂出现了不同程度的红移,这和计算的能带结果非常吻合.
Abstract
The lattice parameters,band structures,density of states,electron density differences and optical properties of La,Ce,Nd doped SnO2 are studied by density functional theory (DFT).The computational results show that the bond length near La are greatest changed,while the change near Nd are least,which indicates the lattice distortion caused by rare earth doped in SnO2 is related to the covalent radius of doping atom.The band structure shows that rare earth doping can make the band gap of SnO2 narrow.The La doping makes the band gap reduced 0.892 eV comparing that of intrinsic SnO2,and Nd doping induces three energy levels in the forbidden band.The electron density difference shows that rare earth doping makes the electron redistribution of SnO2 and the iconicity enhance,especially the existence of f electrons.La atom loses electrons most and Nd atom loses least,which are consistent with the calculated results of band gaps.The calculated results of optical properties show that the imaginary part of the dielectric function and absorption function have a red shift,which agrees well with the calculated results of energy band gap.

邵婷婷, 张富春, 崔红卫. La,Ce,Nd 掺杂SnO2的电子结构和光学性质密度泛函理论研究[J]. 激光与光电子学进展, 2015, 52(9): 091602. Shao Tingting, Zhang Fuchun, Cui Hongwei. Density Functional Theory Study on the Electronic Structure and Optical Properties of La,Ce and Nd doped SnO2[J]. Laser & Optoelectronics Progress, 2015, 52(9): 091602.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!