首页 > 论文 > 光学学报 > 35卷 > 9期(pp:0930002--1)

高灵敏度快速扫描光腔衰荡光谱方法探测大气CH4含量

High-Sensitivity Rapidly Swept Cavity Ringdown Spectroscopy for Monitoring Ambient CH4

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

搭建了基于近红外连续激光器的高灵敏度快速扫描光腔衰荡光谱仪(SC-CRDS)。通过压电陶瓷(PZT)快速扫描腔长,并用跟踪电路使腔长自动跟踪激光波长变化,实现衰荡光谱的快速测量。利用CH4在1653.73 nm (6046.95 cm-1)附近的光谱吸收峰,用该装置对CH4气体含量进行测量。通过测量多个光谱点确定吸收线中心吸收峰值和激光波长,并反馈补偿激光中心波长使其稳定在吸收线,成功解决了由于激光器波长/频率严重漂移导致的不能持续准确测量问题。利用标准浓度的CH4样品校准其1653.73 nm 吸收峰谱线强度。该光腔衰荡光谱仪装置结构简单,性能稳定,CH4浓度检测限达到1.0×10-9,可用于长时间监测室外空气中的CH4浓度。

Abstract

A rapidly-swept high-sensitivity cavity ringdown spectrometer (SC-CRDS) has been developed based on near-infrared continuous-wave diode lasers. By rapid sweeping/dithering of the ringdown cavity length via a piezo-electric transducer (PZT) , in combination with an automatic cavity length tracking circuit to follow laser wavelength changes, fast CRDS measurements are achieved. This system is applied for measurement of CH4 concentration by detecting its spectroscopic absorption peak around 1653.73 nm (6046.95 cm- 1). By measuring multiple spectral points around the absorption peak, both the peak absorption value and corresponding laser wavelength are determined. A feedback control to the laser wavelength helps to stabilize its center wavelength to the absorption peak. Therefore, it successfully solves the problem of strong wavelength drift of the laser in free operation. The line strength of the CH4 1653.73 nm absorption feature is calibrated by measuring CH4 premixture samples with reference concentrations. This simple CRDS system shows stable and reliable performance as well as a CH4 concentration detection limit of 1.0×10-9; and it can be applied to monitor CH4 in ambient air over a long time.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:O436

DOI:10.3788/aos201535.0930002

所属栏目:光谱学

基金项目:中国科学院战略性先导科技专项(XDA05040102)、安徽省自然科学基金(1408085MKL48)

收稿日期:2015-03-18

修改稿日期:2015-05-05

网络出版日期:--

作者单位    点击查看

孙丽琴:中国科学院安徽光学精密机械研究所环境光学与技术重点实验室, 安徽 合肥 230031
陈兵:中国科学院安徽光学精密机械研究所环境光学与技术重点实验室, 安徽 合肥 230031
阚瑞峰:中国科学院安徽光学精密机械研究所环境光学与技术重点实验室, 安徽 合肥 230031
李明星:中国科学院安徽光学精密机械研究所环境光学与技术重点实验室, 安徽 合肥 230031
姚路:中国科学院安徽光学精密机械研究所环境光学与技术重点实验室, 安徽 合肥 230031
魏敏:中国科学院安徽光学精密机械研究所环境光学与技术重点实验室, 安徽 合肥 230031
何亚柏:中国科学院安徽光学精密机械研究所环境光学与技术重点实验室, 安徽 合肥 230031

联系人作者:孙丽琴(lqsun@aiofm.ac.cn)

备注:孙丽琴(1989—),女,硕士研究生,主要从事连续激光光腔衰荡吸收光谱法检测痕量气体方面的研究。

【1】Wang Tieyun, Zhang Lei, Dong Lei, et al.. Minimum detection limit for methane with single laser remote sensing[J]. Chinese J Lasers, 2006, 33(3): 405-407.
王铁云, 张雷, 董磊, 等. 激光遥测甲烷气体最低可探测浓度[J]. 中国激光, 2006, 33(3): 405-407.

【2】G De Smedt, F de Corte, R Notele, et al.. Comparison of two standard test methods for determining explosion limits of gases at atmospheric conditions[J]. Journal of Hazardous Materials, 1999, 70(3): 105-113.

【3】F D’amato, P Mazzinghi, F Castagnoli. Methane analyzer based on TDL′s for measurements in the lower stratosphere: Design and laboratory tests[J]. Applied Physics B, 2002, 75(2-3): 195-202.

【4】Wei Min, Liu Jianguo, Kan Ruifeng, et al.. Study on detection of greenhouse gases based on quantum cascade laser[J]. Acta Optica Sinica, 2014, 34(12): 1230003.
魏敏, 刘建国, 阚瑞峰, 等. 基于量子级联激光器的温室气体测量方法研究[J]. 光学学报, 2014, 34(12): 1230003.

【5】A Kosterev, G Wysocki, Y Bakhirkin, et al.. Application of quantum cascade lasers to trace gas analysis[J]. Applied Physics B, 2008, 90(2): 165-176.

【6】Yang Huinan, Guo Xiaolong, Su Mingxu. Liquid-water film-thickness online measurement in a flow channel by TDLAS[J]. Chinese J Lasers, 2014, 41(12): 1208010.
杨荟楠, 郭晓龙, 苏明旭. 基于TDLAS技术在线测量气流道内液膜动态厚度[J]. 中国激光, 2014, 41(12): 1208010.

【7】Wang Wei, Liu Wenqing, Zhang Tianshu. Continuous field measurements of stable isotopes in atmospheric water vapor by FTIR spectrometry[J]. Acta Optica Sinica, 2014, 34(1): 292-298.
王薇, 刘文清, 张天舒. 利用傅里叶变换红外光谱技术连续测量环境大气中水汽的稳定同位素[J]. 光学学报, 2014, 34(1): 292-298.

【8】T E L Smith, M J Wooster, M Tattaris, et al.. Absolute accuracy and sensitivity analysis of OP-FTIR retrievals of CO2, CH4 and CO over concentrations representative of“clean air”and“polluted plumes”[J]. Atmospheric Measurement Techniques, 2011, 4(1): 97-116.

【9】Wei Xiuli, Lu Yihuai, Gao Minguang, et al.. Atmospheric CH4 concentrations and the correlation between CH4 and CO concentrations [J]. Spectroscopy and Spectral Analysis, 2007, 27(4): 668-670.
魏秀丽, 陆亦怀, 高闽光, 等. 空气CH4浓度变化及其与CO 的相关性[J].光谱学与光谱分析, 2007, 27(4): 668-670.

【10】B J Orr, Y He. Rapidly swept continuous-wave cavity-ringdown spectroscopy[J]. Chemical Physics Letters, 2011, 512(1-3): 1-20.

【11】B Chen, Y R Sun, Z Y Zhou, et al.. Ultrasensitive, self-calibrated cavity ring-down spectrometer for quantitative trace gas analysis[J]. Applied Optics, 2014, 53(32): 7716-7723.

【12】Wang Chunmei, Li Jiong, Gong Tianlin, et al.. Determination of the absolute absorption cross section of oxygen forbidden transition by cavity ring down spectroscopy[J]. Acta Optica Sinica, 2007, 27(11): 2087-2090.
王春梅, 李炯, 龚天林, 等. 腔衰荡光谱技术测量O2禁戒跃迁绝对吸收截面[J]. 光学学报, 2007, 27(11): 2087-2090.

【13】Tan Zhongqi, Long Xingwu, Huang Yun. High sensitivity cw-cavity ring down spectroscopy of tuning wavelength[J]. Acta Optica Sinica, 2009, 29(3): 747-751.
谭中奇, 龙兴武, 黄云. 高灵敏度调谐式连续波腔衰荡光谱技术[J]. 光学学报, 2009, 29(3): 747-751.

【14】Y B He, R F Kan, F V Englich, et al.. Simultaneous multi-laser, multi-species trace-level sensing of gas mixtures by rapidly swept continuous-wave cavity-ringdown spectroscopy[J]. Optics Express, 2010, 18(19): 20059-20071.

【15】H Chen, J Winderlich, C Gerbig, et al.. High-accuracy continuous airborne measurements of greenhouse gases (CO2 and CH4 ) using the cavity ring-down spectroscopy (CRDS) technique[J]. Atmospheric Measurement Techniques, 2010, 3: 375-386.

【16】L Li, J M Chen, H Chen, et al.. Monitoring optical properties of aerosols with cavity ring-down spectroscopy[J]. Journal of Aerosol Science, 2011, 42(4): 277-284.

【17】Fang Shuangxi, Zhou Lingxi, Zang Kunpeng, et al.. Measurement of atmospheric CO2 mixing ratio by cavity ring-down spectroscopy (CRDS) at the 4 background stations in China[J]. Acta Scientiae Circumstantiae, 2011, 31(3): 624-629.
方双喜, 周凌唏, 臧昆鹏, 等.光腔衰荡光谱(CRDS)法观测我国4个本底站大气CO2[J]. 环境科学学报, 2011, 31(3): 624-629.

【18】Zang Kunpeng, Zhao Huade, Wang Juying, et al.. High-resolution measurement of CH4 in sea surface air based on cavity ringdown spectroscopy technique: The first trial in China seas[J]. Acta Scientiae Circumstantiae, 2013, 33(5): 1362-1366.
臧昆鹏, 赵化德, 王菊英, 等.光腔衰荡光谱法走航连续观测海表大气中CH4[J]. 环境科学学报, 2013, 33(5): 1362-1366.

【19】Y B He, C J Jin, R F Kan, et al.. Remote open-path cavity-ringdown spectroscopic sensing of trace gases in air, based on distributed passive sensors linked by km-long optical fibers[J]. Optics Express, 2014, 22(11): 13170-13189.

【20】Wang Junzhen, Wang Yuefeng, Bai Huijun. A kind of narrow line width external cavity laser diode with wavelength stability and continuous tuning[J]. Chinese J Lasers, 2014, 41(12): 1202002.
王军阵, 汪岳峰, 白慧君. 一种波长稳定可调的窄线宽外腔二极管激光器[J].中国激光, 2014, 41(12): 1202002.

【21】Y He, B J Orr. Rapid measurement of cavity ringdown absorption spectra with a swept-frequency laser[J]. Applied Physics B, 2004, 79(8): 941-945.

【22】Y He, B J Orr. Continuous-wave cavity ringdown absorption spectroscopy with a swept-frequency laser: Rapid spectral sensing of gas-phase molecules[J]. Applied Optics, 2005, 44(31): 6752-6761.

【23】Y He, B J Orr. Ringdown and cavity-enhanced absorption spectroscopy using a continuous-wave tunable diode laser and a rapidly swept optical cavity[J]. Chemical Physics Letters, 2000, 319(1-2): 131-137.

【24】Y He, B J Orr. Optical heterodyne signal generation and detection in cavity ringdown spectroscopy based on a rapidly swept cavity[J]. Chemical Physics Letters, 2001, 335(3-4): 215-220.

【25】A A Istratov, O F Vyvenk. Exponential analysis in physical phenomena[J]. Review of Scientific Instruments, 1999, 70(2): 1233-1257.

【26】Wang Dan, Hu Renzhi, Xie Pinhua, et al.. Fast and accurate extraction of ring-down time in cavity ring-down spectroscopy[J]. Spectroscopy and Spectral Analysis, 2014, 34(10): 2845-2850.
王丹, 胡仁志, 谢品华, 等. 腔衰荡光谱技术中衰荡时间的准确快速提取[J]. 光谱学与光谱分析, 2014, 34(10): 2845-2850.

【27】L S Rothman, I E Gordon, Y Babikov, et al.. The HITRAN2012 molecular spectroscopic database[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2013, 130: 4-50.

【28】Xie Donghong. Deng Dapeng, Guo Li. Line- width measurement method of narrow line width lasers[J]. Laser & Optoelectronics Progress, 2013, 50(1): 010006.
解东宏, 邓大鹏, 郭丽. 窄线宽激光器线宽测量方法[J]. 激光与光电子学进展, 2013, 50(1): 010006.

【29】D A Long, G W Truong, R D V Zee, et al.. Frequency-agile, rapid scanning spectroscopy: Absorption sensitivity of 2 × 10-12 cm-1 Hz-1/2 with a tunable diode laser[J]. Applied Physics B, 2014, 114(4): 489-495.

【30】K Samir, A Campargue. Cavity ring down spectroscopy with 5×10-13 cm-1 sensitivity[J]. The Journal of Chemical Physics, 2012, 137(23): 234201.

【31】H Muramatsu. Methane emission in large cities[J]. TAO, 1995, 6(3): 367-377.

【32】L F Yu, H Wang, G S Wang, et al.. A comparison of methane emission measurements using eddy covariance and manual and automatic chamber-based techniques in Tibetan Plateau alpine wetland[J]. Environmental Pollution, 2013, 181: 81-90.

引用该论文

Sun Liqin,Chen Bing,Kan Ruifeng,Li Mingxing,Yao Lu,Wei Min,He Yabai. High-Sensitivity Rapidly Swept Cavity Ringdown Spectroscopy for Monitoring Ambient CH4[J]. Acta Optica Sinica, 2015, 35(9): 0930002

孙丽琴,陈兵,阚瑞峰,李明星,姚路,魏敏,何亚柏. 高灵敏度快速扫描光腔衰荡光谱方法探测大气CH4含量[J]. 光学学报, 2015, 35(9): 0930002

被引情况

【1】吉慕尧,段亚凡,钮月萍,龚尚庆. 基于V型电磁诱导透明效应的腔衰荡光谱研究. 光学学报, 2016, 36(11): 1127001--1

【2】宋绍漫,颜昌翔. 基于光腔衰荡光谱技术的痕量甲烷检测. 光谱学与光谱分析, 2020, 40(7): 2023--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF